

Unidad Azcapotzalco

Proyecto terminal

Rediseño de la parte motriz del robot Pakal

Presenta

Omar Hernández Paniagua

Asesores

M. en C. Sergio Alejandro Villanueva Pruneda.

Ing. Romy Pérez Moreno

UNIVERSIDAD AUTÓNOMA METROPOLITANA

(Original y cuatro tantos)

SOLICITUD DE AUTORIZACION DE PROYECTO(S) TERMINAL(ES): 1 1133051 y 1133052

Hernández Paniagua Omar NOMBRE DEL ALUMNO

207303689 MATRÍCULA

Ingeniería Mecánica 5-abril-2013

Sergio A. Villanueva Pruneda Romy Pérez Moreno

Asesores

Energía Energía

Carrera

Fecha

Departamento

Nombre del proyecto:

Rediseño de la parte motriz del robot Pakal.

Objetivos del proyecto:

Determinar el modo de unión entre la parte motriz y la plataforma.

Determinar cómo eliminar el peso de la tracción por lo menos en un 40%.

Optimizar el torque de tracción.

Realizar la simulación cinemática del diseño final.

Estimar el costo total de fabricación.

Antecedentes del proyecto:

La Universidad Autónoma Metropolitana unidad Azcapotzalco (UAM-A) fue la única universidad mexicana que participó con un robot excavador de tecnología propia en la tercera edición de Lunabotics Mining Competition, organizada por la NASA, del 21 al 26 de mayo, en el Kennedy Space Center, Florida, Estados Unidos, quedando dentro de los 13 mejores equipos (diez de EE. UU., dos de Canadá y uno de México) entre 58 participantes a nivel internacional.

Descripción técnica:

Fechas importantes

- La masa del Lunabot se limita a 80 kg.
- El Lunabot debe tener menos de 1.5 m de largo x 0.75 m de ancho x 0.75 m de altura. El Lunabot puede crecer más allá de los 1.5 m de largo x 0.75 m de ancho después del inicio de cada intento de la competencia, pero no podrá ser superior a 1.5 m de altura.

Entrega del informe parcial o final al asesor: 11va. Semana del trimestre 130 Presentación del informe al comité de estudios: 12va. Semana del trimestre 130 MANA CHOIS BOOKS ME MONTO A LEGAC VICADO 153/CO Omar Hernández Paniagua Sergio A. Villanueva Pruneda / Romy Pérez Moreno METROPOLITANA Alumno (firma) Asesor (nombre y firma) ANEXOS: Plan de trabajo 5/Abril/2013 ING. Dr. Hilario Terres Peña

Original: Coordinación de sistemas escolares

Copia 1: Coordinador de estudios

Copia 4: Interesado

Copia 2: Departamento correspondiente

Fecha

Copia 3: Asesor

UNIDAD AZCAPOTZALCO

Coordinador de estudios

DIVISIÓN DE CIENCIAS BÁSICAS E INGENIERÍA

Av. San Pablo 180, Col. Reynosa Tamaulipas. 02200 México, D.F. Apdo. Postal 16-306 02000 México, D.F. Tel: 5318 9060

Contenido

1.	. Contenido		2
2.	. Introducción		5
3.	. Calendarización del proye	cto terminal	6
	3.1. Proyecto terminal I		6
	3.2. Proyecto terminal II		6
4.	. Estado del arte		7
	4.1. Reglas importantes limitar	ntes para el diseño de la tracción	7
	4.2. Aspectos importantes del	robot Pakal	8
	4.3. Modo de unión entre el sis	stema de tracción y excavación	g
	4.4. Propuestas de solución al	problema	10
5.	. Presentación de 3 propuestas de	tracción y selección de la mejor	11
	5.1. Omni Wheel		11
	5.2. Oruga		12
	5.3. Mejorar la tracción 4 x 4 a	ctual	13
	5.4. Selección de la mejor prop	ouesta	15
6.	. Definición del conjunto		16
	6.1. Componentes de la traccio	ón	16
	6.2. Análisis de los component	es de la tracción	17
	6.2.1. Ensamble del bastidor		17
	6.2.2. Motor		18
	6.2.3. Motorreductor		19
	6.2.4. Rin		20
	6.2.5. Aro y Centro de rin		21
	6.3. Primera estimación de pes	sos	22
7.	. Rediseño de componentes pesad	los	23
	7.1. Rin		23
	7.2. Motorreductor		25
	7.2.1. Diseño del motorreduc	tor	26
	7.2.2. Calculo de los engrane	es helicoidales	26
	7.2.2.1. Cálculos del en	granaje del primer paso de reducción	28
	7.2.2.2. Cálculos del en	granaje del segundo paso de reducción	30
	7.2.2.3. Resumen de da	atos	31

	7.2.3. Selec	cción del material en base a su esfuerzo flexionante	31
	7.2.3.1.	Primer piñón	32
	7.2.3.2.	Primer engrane	33
	7.2.3.3.	Segundo piñón	34
	7.2.3.4.	Segundo engrane	35
	7.2.3.5.	Elección del material de los engranes	37
	7.2.4. Calcu	ulo de peso del motorreductor	38
	7.2.5. Estim	nación final de reducción de peso	39
8.	Evaluación del e	estudio funcional	40
	8.1. Diagrama	a funcional	40
	8.2. Estudio f	uncional de tolerancias	41
	8.2.1. Tornil	llo de unión del motorreductor	41
	8.2.2. Árbol	del piñón de entrada	42
	8.2.3. Árbol	del engrane de salida	45
	8.2.4. Tolera	ancia de engranes	48
	8.2.5. Tolera	ancia entre los árboles y las cuñas	48
9.	Optimización de	l torque de tracción	49
10	. Definición de pa	rtes, dibujos de definición y control de dibujos	51
	10.1. Bastidor		53
	10.1.1. Marco	0	54
	10.1.2. Trave	esaño	55
	10.1.3. Esqui	inero	56
	10.1.4. Refue	erzo del bastidor	57
	10.1.5. Calza	a para el refuerzo del bastidor	58
	10.1.6. Calza	a para motor	59
	10.1.7. Relev	/ador	60
	10.2. Rueda		61
	10.2.1. Rin		62
	10.2.2. Aro d	le rin	63
		ro de rin	
	10.3. Reductor	r de velocidad	65
	•	superior	
	10.3.2. Tapa	inferior	67

10.3.3	. Árbol piñón de entrada	68
10.3.4	. Árbol engrane de entrada	69
10.3.5	. Árbol engrane de salida	70
10.3.6	. Calza engrane	71
10.3.7	. Piñón	72
10.3.8	. Engrane de entrada	73
10.3.9	. Engrane de salida	74
10.3.1	0. Relación engranes primer paso	75
10.3.1	Relación engranes segundo paso	76
10.3.1	2. Placa superior	77
10.3.1	3. Junta	78
10.4. Co	pple	79
10.5. En	samble general de la tracción	80
11. Simulació	n cinemática	81
12. Estimació	n de costos	81
13. Referenci	as bibliográficas	84

2. INTRODUCCION

El robot Pakal fue desarrollado en las instalaciones de la Universidad Autónoma Metropolitana – Unidad Azcapotzalco (UAM-A) y fue llevado al *Lunabotics Mining Competition* en el año 2012, siendo esta la tercera competición anual realizada por la NASA y que se llevó a cabo en el centro espacial Kennedy, en Florida, Estados Unidos.

El robot Pakal fue construido por siete profesores y 15 estudiantes de las carreras de Ingeniería Electrónica, Mecánica, Industrial y Sistemas Computacionales de la UAM-A. En total concursaron 58 proyectos y la UAM-A logró quedar en el lugar 12.

Ahora hay muchas mejoras en las que hay que pensar en resolver para poder concursar de nueva cuenta y obtener el mejor lugar posible. Unas de las mejoras que se tomarán en cuenta son la reducción de peso del robot y el mejoramiento en el torque de tracción del mismo.

En este proyecto se rediseñó un sistema de tracción más ligero partiendo del original. Se tiene como objetivo principal el reducir al menos el 40% del peso total de la tracción y el mejoramiento del torque de tracción. Todas estas mejoras se describirán a lo largo de este proyecto y se justificarán los diseños con planos y análisis usando el software Solidworks, versión 2013.

3. CALENDARIZACIÓN DEL PROYECTO TERMINAL

3.1. Proyecto terminal I

Trimestre: 130

Actividades			Semana										
Estudio de la mejor alternativa de solución.		1	2	3	4	5	6	7	8	9	10	11	12
1	Realizar el estado del arte del proyecto.	X	X	X			X			X			X
2	Presentar al menos 3 propuestas y seleccionar la mejor.				X	X	X	X					
3	Definir el conjunto.								Χ	Х	Х		
4	Evaluar el estudio funcional.										Χ	Χ	Х
5	Generar la definición de partes.								X	Х	X	X	X

3.2. Proyecto terminal II

Trimestre: 13P

Actividades			Semana										
Simulación y estimación de costos.			2	3	4	5	6	7	8	9	10	11	12
1	Elaborar planos con especificaciones.	X	X	X									
2	Realizar la simulación cinemática.			Х	Х	Х							
3	Generar estimación de costos.						Х	Х	Х	Х			
4	Elaborar reporte final.									Х	Х	Х	Х
5	Elaborar presentación del proyecto terminal.										X		

4. ESTADO DEL ARTE

4.1. Reglas importantes limitantes para el diseño de la tracción

- **3B)** El equipo gana 3 LunaPoints por cada kilogramo de BP-1 de más de 10 kg depositados en el LunaBin.
- **3D)** El equipo perderá 8 LunaPoints para cada kilogramo de masa Lunabot total.
- **3F)** Los jueces otorgará al equipo 0 a 100 LunaPoints de introducir un diseño regolito-polvo-tolerante en el Lunabot (hasta 30 LunaPoints) y el regolito-polvo-libres (hasta 70 puntos). No dejar al descubierto los mecanismos de los que el polvo podría acumularse durante una Misión lunar y degradar el rendimiento o la vida útil de los mecanismos. Si el Lunabot sube o proyecta una importante cantidad de polvo en el aire, entonces menos puntos serán otorgados.
- 5) La Lunabot se colocan en las posiciones seleccionadas al azar de partida.
- **16)** Habrá tres obstáculos colocados en la parte superior del comprimido BP-1 superficie dentro del área obstáculo antes de cada intento de licitación se efectúe. Cada obstáculo tendrá un diámetro de aproximadamente 20 a 30 cm y una masa aproximada de 7 a 10 kg.
- 20) La masa Lunabot se limita a 80,0 kg.
- 21) No hay limitaciones de potencia.
- **24)** El Lunabot debe contener menos de 1,5 m de largo x 0,75 m de ancho x 0,75 m de altura. El Lunabot puede implementar o expandir más allá de los 1,5 m x 0,75 m huella después del inicio de cada intento de la competencia, pero no podrá ser superior a 1,5 m de altura.
- **25)** El Lunabot no puede emplear cualquier procesos físicos fundamentales (enfriamiento por ejemplo, succión o agua en el ambiente lunar abierta), gases, líquidos o consumibles que no funcionarían en el lunar ambiente.
- **28)** El Lunabot no puede penetrar en la superficie BP-1 con más fuerza que el peso de la Lunabot antes del inicio de cada intento de competencia.

4.2. ASPECTOS IMPORTANTES DEL ROBOT PAKAL

El robot Pakal cuenta con estas características:

Número de ruedas: 4

Número de motores: 4

• Número de motorreductores: 4

Número de ruedas motrices (soporta peso y transmite par motor): 4

• Tipo de sistema de dirección: Diferencial

El peso total de la tracción es de 50 kg.

El bastidor está construido con perfil de aluminio 6063 T-5 de 1/8 x 3 x 1".

La tracción del robot Pakal cuenta con 4 motores de 94.34 W de potencia (aproximadamente 1/8 hp) y un torque de salida de 14.75 Nm, para una velocidad de operación máxima de 0.65 m/s.

El motor, los motorreductores, los rines, los anillos de rin y los centros de rin y los relevadores son elementos comerciales, la única pieza manufacturada es el bastidor de la tracción.

4.3. Modo de unión entre el sistema de tracción y excavación

Como se observa en la Figura 1 y Figura 2 el sistema de excavación está unido al bastidor por medio de uniones mecánicas, que en este caso son remaches y tornillos con tuerca. La unión entre estos dos sistemas no causa ninguna restricción para el diseño de la tracción ya que ningún sistema depende del otro para poder funcionar correctamente, la única condición que hay que mantener es el posicionamiento de los barrenos para la sujeción mecánica entre estos dos sistemas mediante tornillos y/o remaches.

Figura 1. Vista lateral izquierda del robot Pakal.

Figura 2. Vista lateral derecha del robot Pakal.

Para el estudio de este proyecto se conservará el bastidor, sólo se adicionarán barrenos si es necesario modificar o mover los elementos de la tracción.

4.4. Propuestas de solución al problema.

Respecto a las restricciones marcadas por el reglamento del Lunabotics tenemos las siguientes propuestas:

- **3B).** Puesto que la rapidez de recolección estará marcada por otro proyecto, se necesitará de una reunión para determinar el máximo rendimiento del sistema para la recolección de la mayor cantidad de arena posible, en base a eso se necesitará incluir en la tracción la potencia necesaria para cargar el peso máximo estimado.
- **3D)** Se necesita reducir el peso de la tracción del lunabot en por lo menos un 40%, es decir 20 kg.

Propuestas de reducción de peso:

- Buscar motores y motorreductores más ligeros.
- Cambiar el tipo de ruedas, modificar los rines y eliminar el caucho de las llantas.
- Investigar algún material resistente y/o estudiar el impacto a la resistencia del perfil actual generando barrenos estratégicos para reducción de peso.
- **4D)** Usar vehículos donde se pueda implementar una carcasa que proteja al mecanismo del polvo.
- 5) Vehículos que permitan girar en su propio eje.
- **16)** Buscar un sistema que permita la estabilidad del carro manteniendo a los motores trabajando bajo las mismas condiciones de fricción.

5. PRESENTACIÓN DE 3 PROPUESTAS DE TRACCIÓN

Se consideran propuestas que permitan girar en su propio eje para superar la LunArena.

Tipos de tracción.

Tipo de	# do	# de	# de	# de	Tipo de
propuesta	# de			ruedas	sistema
	ruedas	motores	motorreductores	motrices	dirección
Omniwheel	3	3	3	3	Diferencial
Oruga	2 Orugas	2	2	2	Diferencial
4 x 4	4	4	4	4	Diferencial

Tabla 1. Especificaciones de las tracciones consideradas para el rediseño

Aspectos a considerar:

- Apto para todo terreno
- Masa
- Tiempo de manufactura
- Costo
- Giro sobre su propio eje
- Mecanismo expuesto al polvo

Se pensaron en 3 propuestas diferentes, entre las cuales están:

5.1. Omni wheels

Ventajas:

- Permiten movimientos complicados (reducen restricciones cinemáticas).
- Mecanismo protegido al polvo.

Inconvenientes:

- El movimiento en línea recta no está garantizado por restricciones mecánicas: Es necesario control.
- Implementación complicada
- Inestabilidad para un vehículo de carga.

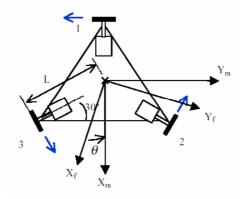


Figura 4. Tracción omni wheel.

Figura 3. Esquema de la traccion de un omniwheel

5.2. Oruga

Las orugas se construyen uniendo, mediante una cadena que rodea las llantas, las ruedas delanteras y traseras, cuyo fin es aumentar la superficie de contacto con el suelo y conseguir una mayor tracción. Las orugas permiten rebasar mayores obstáculos que solamente usando ruedas e incluso subir escaleras. Como desventaja, presenta la gran cantidad de energía que necesita el robot en los giros. El giro se realiza rotando las cadenas en sentidos opuestos, de modo que las fuerzas inversas hacen girar el robot.

Ventajas:

- Sistema simple de controlar
- Permite cargar peso.
- Puede librar obstáculos fácilmente.

Inconvenientes:

- No se dispone de modelo preciso de giro
- · Consume mucha potencia para girar.
- · Mecanismo expuesto al polvo

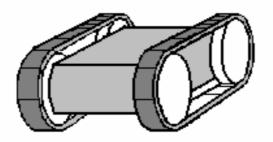


Figura 5. Tracción de oruga

5.3. Mejorar la tracción 4 x 4 actual

La principal ventaja por la que se utilizan las ruedas como medio locomotor en un robot es que éstos son más fáciles de construir. Para que un robot que use ruedas pueda moverse simplemente hay que suministrar energía al eje de las ruedas motrices. Además, con este tipo de locomoción el robot puede desplazar mayor peso. En cuanto a las desventajas, las ruedas no permiten salvar grandes obstáculos, en concreto, cualquier objeto que tenga más altura que el radio de la rueda, no podrá ser librado por ésta.

Para mejorar la tracción del robot Pakal hay que aumentar el torque de tracción y así aumentar la velocidad máxima del vehículo. Para asegurar la adhesión de las llantas en el suelo de la competencia es importante pensar en algún caucho que brinde ventajas como las llantas de un 4x4, ya que estas están diseñadas para moverse en todo terreno, esto nos garantizara que el vehículo se mueva correctamente en el campo de la competencia.

Ventajas:

- Mecanismo protegido del polvo.
- Buena estabilidad con carga.
- Permite cargar peso.
- Fácil de construir.

Inconvenientes:

- Hasta ahora es muy pesado.
- Difícil de controlar.
- Motores y reductores muy pesados.
- El caucho actual tiende a amontonar tierra entre los orificios.
- Problemas para librar obstáculos muy grandes.

Figura 6. Robot Pakal con tracción de 4 motores y 4 motorreductores

5.4. Selección de la mejor propuesta

Se retomará la propuesta del mejoramiento de la tracción 4 x 4 ya existente, debido a que el objetivo de este proyecto es rediseñar el robot Pakal, seleccionar otro método de tracción ya no entraría en mejora del diseño ya existente, esto sería realizar un proyecto con características completamente diferentes. El objetivo principal es reducir el peso en por lo menos un 40 %, lo que corresponde a 20 kg.

No todos los componentes de la tracción se van a modificar, solo serán cambiados los componentes que aporten demasiado peso para el robot. Para seleccionar los componentes a modificar se clasificarán y se enlistaran de mayor a menor peso, así será más fácil seleccionar qué componentes se deben mejorar o remplazar para lograr la reducción de peso de al menos 20 kg. Dichos pesos serán enlistados en el capítulo 6.

6. DEFINICION DEL CONJUNTO

6.1. Componentes de la tracción

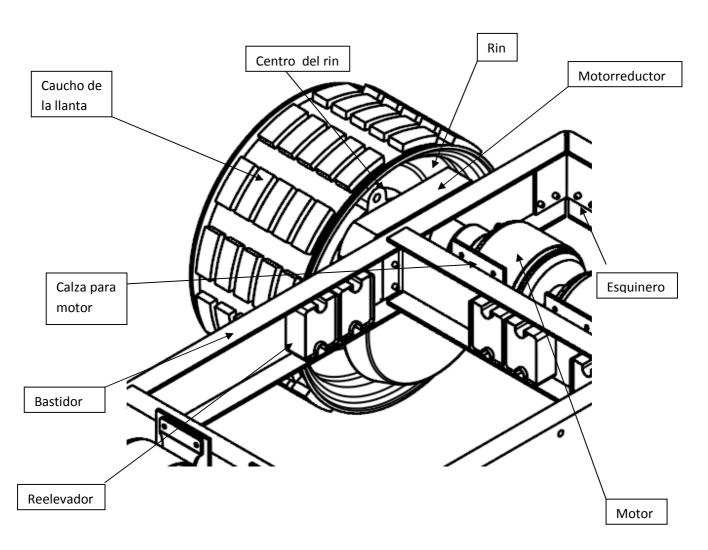


Figura 7. Vista parcial del robot Pakal y componentes de la tracción.

6.2. Análisis de los componentes de la tracción

La mayoría de los componentes no se pudieron analizar a profundidad debido a que el robot Pakal está totalmente ensamblado, y se decidió no desensamblarlo, así que hubo piezas que no se pudieron retirar para su respectivo análisis.

En esta sección se analizaran los componentes determinando su peso aproximado. Solo el reductor de velocidad y un motor pudieron ser pesados en una balanza, los demás componentes se analizaron en Solidworks para la determinación aproximada de su peso. El principal dato que tenemos es que toda la tracción tiene un peso de 50 kg.

6.2.1. Ensamble de la tracción

Se analizó el bastidor completamente ensamblado debido a que ninguno de sus componentes representa gran peso para la tracción, así que no será necesario remplazar o modificar ninguna de las piezas que lo conforman ya que están fabricados con aluminio y este no aporta gran peso.

El análisis se llevó a cabo en Solidworks, bajos los siguientes datos.

- Planos con todas las medidas correspondientes del bastidor [1]
- Está construido con una aleación de aluminio 6063 T-5.

El peso calculado para este ensamble es de 4.288 kg. En la Figura 8 se puede observar el análisis del software.

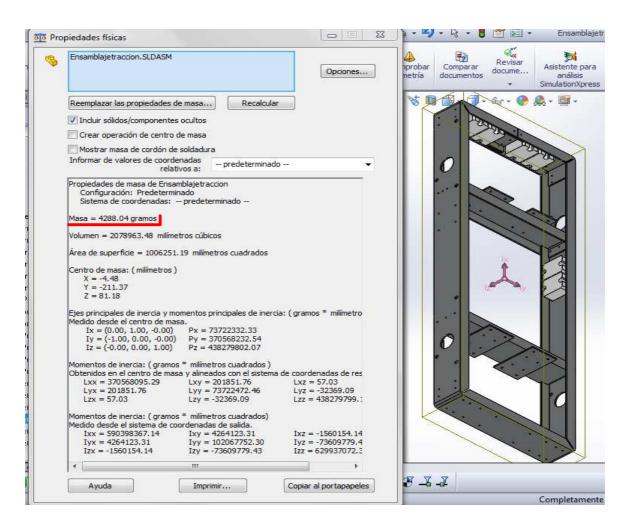


Figura 8. Análisis del bastidor en Solidworks.

6.2.2. Motor

Este componente ya fue remplazado antes de haber comenzado este proyecto, ahora el sistema cuenta con un motor con las siguientes características:

Voltaje: 24 VCorriente: 15 A

Velocidad: 3000 rpm

o Potencia: 250 W

La masa de cada motor es de 1 kg. Este peso se obtuvo con una báscula mecánica.

6.2.3. Motorreductor

El motorreductor es uno de los componentes más pesados del sistema de tracción. También es importante notar que es un componente comercial, ya que se usa el motorreductor de un Segway, el cual es un vehículo de dos ruedas tal y como se muestra en la Figura 9.

Figura 9. El motorreductor proviene de un Segway [5].

El motorreductor cuenta con las siguientes características:

- o Sistema de reducción de dos pasos.
- o Relación de reducción de velocidad de 24:1.
- o Construida con engranes helicoidales.

En la Figura 10 se muestra el motorreductor. El peso del motorreductor se determinó mediante una báscula mecánica y la masa medida fue de 4.7 kg.

Figura 10. Motorreductor de un Segway.

6.2.4. Rin

El rin fue un componente adquirido y está fabricado con acero, debido a que no se pudo desensamblar para pesarlo en una balanza estándar se sometió a un análisis de peso usando el plano de especificación del proyecto anterior [1]. Una vez obtenido el dibujo de la pieza se analizó en Solidworks y se determinó que el peso aproximado de cada rin, el cual es de 4.366 kg, tal y como se muestra en la Figura 11.

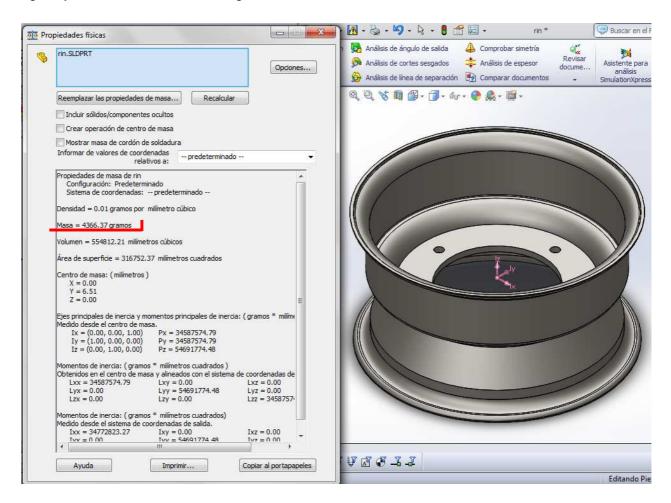


Figura 11. Análisis de un rin de acero en Solidworks.

6.2.5. Aro y centro de Rin

Además, el rin cuenta con aro de rin y centro de rin, los cuales están construidos con aluminio, usando el plano de especificación del proyecto anterior [1]. Se calculó la masa de ambos por medio de este software. La masa fue aproximadamente de 0.9 kg.



Figura 12. Centro y Aro de rin analizados en Solidworks.

6.3. Primera estimación de pesos

Ahora ya podemos enlistar los componentes de la tracción con sus respectivos pesos, así podremos determinar que componentes se modificarán o reemplazarán. En la Tabla 2 se enlistan los componentes de la tracción con sus respectivos pesos.

Componente	Peso	Número de	Peso en
Componente	(kg)	elementos	conjunto (kg)
Bastidor	4.3	1	4.3
Motor	1	4	4
Motorreductor	4.7	4	18.8
Rin	4.7	4	18.8
Aro y centro de rin	0.9	4	3.6
Total			49.5

Tabla 2. Pesos aproximados de los componentes de la tracción.

Como se observa en la Tabla 2 hay un peso total de 49.5 kg, a esta aproximación le hace falta sumar el peso de la tornillería, del caucho de cada rin y de 4 coples que conectan al motor con el motorreductor.

En la Tabla 2 se puede observar que los componentes más pesados son los rines y los motorreductores, así que se tendrán que modificar o remplazar para alcanzar el objetivo principal.

7. REDISEÑO DE COMPONENTES PESADOS

7.1. Rin

El rin actual tiene un diámetro aproximado de 11 pulgadas y se aproxima a los 4.7 kg., por esta razón se debe de cambiar el rin por otro más ligero. Se pensó en adquirir rines de aluminio comerciales, pero los más pequeños en el mercado son de 13 pulgadas de diámetro. La masa aproximada de cada rin es de 4 kg, esto debido a que es más grande y es de un espesor mayor que el rin de acero actual.

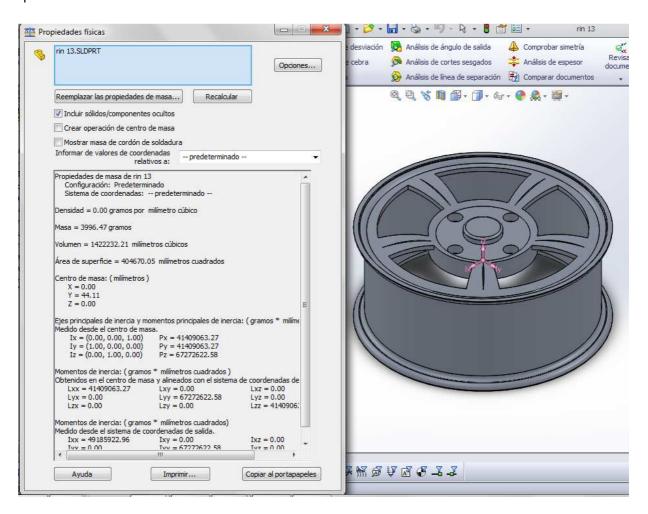


Figura 13. Análisis de un rin 13 de aluminio comercial en Solidworks

Como se observa en la Figura 13 el rin tiene un peso aproximado de 4 kg., por esta razón se optó por diseñar un rin que sea de las mismas dimensiones que el rin actual y se pueda mandar a manufacturar para obtenerlo de una aleación de aluminio para mejorar su resistencia.

Para el diseño de un nuevo rin es necesario fijar ciertas restricciones para facilitar la construcción del nuevo rin. Las restricciones a seguir son las siguientes:

- Debe de tener el mismo diámetro exterior que el rin actual para evitar desajustes en el diseño.
- Al ser de aluminio, debe de tener mayor espesor que el de acero para asegurar su resistencia.
- Los barrenos deben de estar a la misma separación debido a que el centro y aro de rin debe de ensamblar de la misma forma en este nuevo rin.
- La cara exterior del rin debe ser plana para así evitar gastos extra por la manufactura de dicho rin, además, debido a que se planea usar un caucho de alta tracción para mejorarla es innecesario hacer bordes a la cara exterior, puesto que no serán de utilidad alguna.

El plano del rin de aluminio se muestra en el capítulo 10. En la Figura 14 se puede observar el análisis de la masa generado por Solidworks.

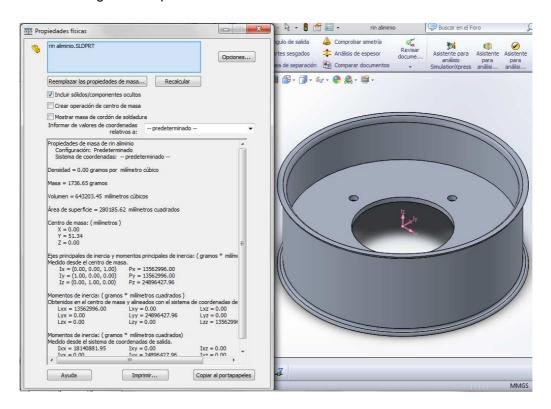


Figura 14. Análisis de Solidworks de un rin construido con aluminio.

Como se puede ver en la Figura 14 el peso del nuevo rin es de 1.736 kg., en este paso ya logramos reducir a más del 50% el peso del rin actual.

7.2. Motorreductor

El motorreductor actual es de un Segway el cual fue analizado en la báscula mecánica para conocer su masa. De esta forma determinamos que era conveniente diseñar un motorreductor más ligero. El peso del motorreductor es de 4.7 kg, por lo tanto es indispensable diseñar un motorreductor que sea ligero y tenga las mismas características cinemáticas del primera. Los datos importantes del motorreductor de un Segway son [2]:

- Sistema de reducción de 2 pasos.
- Factor de reducción de 24:1.
- Construida con engranes helicoidales.

La velocidad de salida de los motores es de 3000 rpm, lo que a la salida del motoreductor se convertirá en 125 rpm, por lo tanto la velocidad lineal proporcionada será:

Datos:

Velocidad de salida = 125 rpm

Diámetro de la llanta/rin = 11 pulgadas = 0.2794 m

Entonces:

$$125 \frac{\text{rev}}{\text{min}} * \frac{2\pi \text{ rad}}{1 \text{ rev}} * \frac{1 \text{ min}}{60 \text{ s}} = 13.09 \text{ rad/s}$$

Velocidad lineal = velocidad angular * radio = $13.09 \frac{\text{rad}}{\text{s}} * 0.1397 \text{m} = 1.8286 \text{ m/s}$

7.2.1. Diseño del motorreductor

Con los datos obtenidos previamente ya podemos hacer el diseño de los engranes que formaran parte del motorreductor, los datos propuestos son:

• Debido a que es un sistema de reducción de dos pasos de 24:1 las relaciones propuestas para cada paso son:

$$\frac{1}{4} * \frac{1}{6} = \frac{1}{24}$$

Entonces la primera relación será de 4:1 y la segunda de 6:1

- Puesto que son engranes helicoidales se proponen los siguientes datos:
 - o Angulo de hélice = 20°
 - Paso diametral = 20, puesto que se buscan engranes finos por el tamaño de los engranes [3].
 - o Numero de dientes del piñón = 16 dientes
 - o Angulo de presión normal = 20

7.2.2. Calculo de los engranes helicoidales

En el primer paso de reducción tenemos una relación de 4:1; por lo tanto si el piñón cuenta con 16 dientes, así que el engrane deberá de tener (4*16) = 64 dientes.

También conocemos los siguientes datos del motor

Velocidad angular del motor	w = 3000 rpm
Potencia del motor	P = 250 w = 0.335 hp

Tabla 3. Datos del motor.

Para el cálculo de las propiedades de los engranes usaremos las siguientes formulas [2]:

Nombre	Formula	Donde
Paso circular	$p = \pi D/N$	D = Diámetro de paso
Paso circular normal	pn = pcosΨ	N = Número de engranes
Paso diametral	Pd = N/D	Dg = Diámetro de engrane
Paso diametral normal	Pnd = Pd/cosΨ	Dp = Diámetro de piñón
Relación entre p y Pd	$Pd^*p = \pi$	P = Potencia transmitida
Paso axial	$Px = p/tan\Psi = \pi/(Pd tan\Psi)$	n = velocidad de giro
Holgura	c = b - a	Ψ = Ángulo de la hélice
Addendum	a = 1/Pd	φt = Ángulo de presión transversal
Deddendum	b = (1.2/Pd) + 0.002	φn = Ángulo de presión normal
Diámetro exterior	Do = D + 2a = (N+2)/Pd	J = factor de geometría (ver "tabla
Diámetro de raíz	Dr = D - 2b	10-6 [3]")
Altura total	ht = a + b	
Ancho de cara	F ≥ 2Px	
Distancia entre centros	C = (Dg + Dp)/2	
Fuerza tangencial	Wt = 33 000 P / vt	
Relación entre ángulos	$tan \phi n = tan \phi t \cos \Psi$	
Esfuerzo flexionante en	$s_{t} = \frac{WtPd}{FJ} K_{O}K_{S}K_{m}K_{B}K_{v}$	
dientes de engranes	$s_t - \frac{K_0 K_S K_m K_B K_V}{FJ}$	
Factor de sobrecarga	K ₀ = ver "tabla 9-5 [3]"	
Factor de tamaño	K _S = ver " <i>tabla 9-6</i> [3]"	
Factor de distribución de	K _m = 1 [3]	
carga	$R_{\rm m} = 1$ [3]	
	K _B = 1; para mb > 1.2	
Factor de espesor de orilla	$K_B = 1.6 \ln \frac{2.242}{\text{mb}}$; para mb < 1.2	
Relación de respaldo	mb = tr/ht	
Velocidad lineal	vt = Dw/2 (pies/min)	
Numero de calidad	Q _v = ver " <i>tabla 9.2</i> [3]"	
Factor dinámico	$K_v = Ver Figura 15 [3]$	

Tabla 4. Fórmulas para el cálculo de engranes helicoidales.

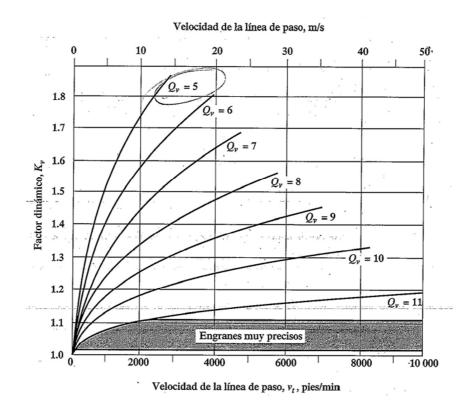


Figura 15. Factor dinámico, figura 9.21 [3].

Usando las formulas de la Tabla 4 se calcularán todas las especificaciones de los engranes, los cálculos se muestran a continuación.

7.2.2.1. Cálculos del engranaje del primer paso de reducción

Datos

Numero de dientes piñón	N _P = 16
Numero de dientes engrane	$N_G = 64$
Paso diametral	Pd = 20
Angulo de hélice	Ψ = 20°
Angulo de presión normal	φn = 20°

Tabla 5. Datos del primer paso de reducción.

Ya que todos los engranes tendrán los mismos datos, lo único diferente serán los números de dientes, entonces, la mayoría de las especificaciones serán las mismas.

Piñón

 $Pd = N/D_P$; $D_P = N/Pd = 16 / 20$ $D_P = 0.8 in$

Engrane

 $D_G = N/Pd = 64 / 20$ $D_P = 3.2 in$

Pdn = Pd / $\cos \Psi$; Pdn = 20/ $\cos (20)$ Pdn = 21.283

 $p = \pi D/N;$ $p = \pi^* 0.8/16;$ p = 0.157 in

pn = $pcos\Psi$; pn = 0.157*cos(20); pn = 0.1475 in

 $Px = \pi/(Pd \tan \Psi);$ $Px = \pi/(20*tan(20));$ Px = 0.4315 in

 $F \ge 2 Px$; $F \ge 2*0.4315$; $F \ge 0.863$ Se usara un espesor de 1 in

a = 1/Pd; a = 1/20; a = 0.05 in

b = (1.2/Pd) + 0.002; b = (1.2/20) + 0.002; b = 0.062 in

ht = a + b; ht = 0.05 + 0.062; ht = 0.112 in

Piñón

Do = D + 2a; Do = 0.8 + 2*0.05; Do = 0.9 in

Dr = D - 2b; Dr = 0.8 - 2*0.062; Dr = 0.676 in

Engrane

Do = D + 2a; Do = 3.2 + 2*0.05; Do = 3.3 in

Dr = D - 2b; Dr = 3.2 - 2*0.062; Dr = 3.076 in

Distancia entre centros

C = (Dg + Dp)/2; C = (0.8+3.2)/2; $\underline{C = 2 in}$

7.2.2.2. Cálculos del engrane del segundo paso de reducción

Datos:

Dientes piñón	$N_P = 16$
Dientes engrane	$N_{G} = 96$
Paso diametral	Pd = 20
Angulo de hélice	Ψ = 20°
Angulo de presión normal	φn = 20°

Tabla 6. Datos del segundo paso de reducción.

Piñón

 $Pd = N/D_P;$ $D_P = N/Pd = 16 / 20$ $D_P = 0.8 in$

Engrane

 $D_G = N/Pd = 96 / 20$ $D_P = 4.8 in$

Pdn = Pd / $\cos \Psi$; Pdn = 20/ $\cos (20)$ Pdn = 21.283

 $p = \pi D/N;$ $p = \pi^* 0.8/16;$ p = 0.157 in

pn = $pcos\Psi$; pn = 0.157*cos(20); pn = 0.1475 in

 $Px = \pi/(Pd \tan \Psi);$ $Px = \pi/(20*tan(20));$ Px = 0.4315 in

 $F \ge 2 Px$; $F \ge 2*0.4315$; $F \ge 0.863$ Se usara un espesor de 1 in

a = 1/Pd; a = 1/20; a = 0.05 in

b = (1.2/Pd) + 0.002; b = (1.2/20) + 0.002; b = 0.062 in

ht = a + b; ht = 0.05 + 0.062; ht = 0.112 in

Piñon

Do = D + 2a; Do = 0.8 + 2*0.05; Do = 0.9 in

Dr = D - 2b; Dr = 0.8 - 2*0.062; Dr = 0.676 in

Engrane

Do = D + 2a; Do =
$$4.8 + 2*0.05$$
; Do = 4.9 in

$$Dr = D - 2b$$
; $Dr = 4.8 - 2*0.062$; $Dr = 4.676$ in

Distancia entre centros

$$C = (Dg + Dp)/2;$$
 $C = (0.8+4.8)/2;$ $C = 2.8 in$

7.2.2.3. Resumen de datos

	# de dientes	D	Do	Dr	С
Piñón 1	16	0.8	0.9	0.676	2
Engrane 1	64	3.2	3.3	3.076	_
Piñón 2	16	0.8	0.9	0.676	2.8
Engrane 2	96	4.8	4.9	4.676	2.0

Tabla 7. Resumen de datos de los engranes del motorreductor.

Pd	20	р	0.157 in	а	0.05
Ψ	20°	pn	0.1475 in	b	0.062
фn	20°	Px	0.4315 in	С	0.012 in
Pdn	21.283	F	1 in	ht	0.112 in

Tabla 8. Datos de los engranes.

7.2.3. Selección del material en base a su esfuerzo flexionante

Para asegurar el funcionamiento del motorreductor (en específico del tren de engranes) es necesario utilizar materiales que sean lo suficientemente resistentes para evitar riesgos de falla, para ello se realizarán los cálculos de esfuerzo flexionante para así determinar el mejor material posible. Para los engranes se considera que una calidad de 10 según la norma AGMA 2000-A88 [3] es suficiente para este caso.

7.2.3.1. Primer piñón

Puesto que es el primer engrane, éste trabaja a la velocidad de salida del motor la cual es de 3000 rpm.

Los cálculos son los siguientes:

Esfuerzo flexionante en dientes de engranes

$$s_t = \frac{WtPd}{FJ} K_O K_S K_m K_B K_{\nu}$$

Factor de sobrecarga

$$K_0 = 1.25$$

Factor de tamaño

$$K_S = 1$$

Factor de distribución de carga

$$K_m = 1$$

Relación de respaldo

$$mb = tr/ht = 0.2125/0.112;$$
 $mb = 1.89$

Factor de espesor de orilla

$$K_B = 1$$
; para mb > 1.2

Calculando la velocidad lineal y número de calidad

$$vt = \frac{D}{2} * w = \frac{0.8in}{2} * 3000 \frac{rev}{min} * \frac{2\pi rad}{1 \text{ rev}} * \frac{1 \text{ ft}}{12 \text{ in}}$$
 $vt = 628.318 \text{ ft/min}$

Factor dinámico

$$K_{y} = 1.23$$

$$Wt = 33\ 000\ P / vt = 33\ 000^*(.335\ hp) / (628.318\ ft/min);$$
 $Wt = 17.6\ lb$

J = 0.46 (ver "tabla 10-6 [3]")

$$s_{t} = \frac{(17.61b) * 20}{1 in * 0.46} * 1.25 * 1 * 1 * 1 * 1.23$$

 $s_t = 1176.52 psi$

7.2.3.2. Primer engrane

Una vez que hace contacto con el primer piñón, este cambia la velocidad a la que girará el primer engrane por la relación de reducción que existe entre ambos, la cual es de 1:4, es decir, la velocidad del primer engrane será de 750 rpm.

Los cálculos son los siguientes:

Esfuerzo flexionante en dientes de engranes

$$s_{t} = \frac{WtPd}{FJ} K_{O}K_{S}K_{m}K_{B}K_{v}$$

Factor de sobrecarga

 $K_0 = 1.25$

Factor de tamaño

 $K_S = 1$

Factor de distribución de carga

 $K_m = 1$

Relación de respaldo

mb = tr/ht = 1.4625/0.112; mb = 13.058

Factor de espesor de orilla

 $K_B = 1$; para mb > 1.2

Calculando la velocidad lineal y número de calidad

$$vt = \frac{D}{2} * w = \frac{3.2in}{2} * 750 \frac{rev}{min} * \frac{2\pi rad}{1 rev} * \frac{1 ft}{12 in}$$
 $vt = 628.318 ft/min$

Factor dinámico

$$K_{v} = 1.11$$

$$Wt = 33\ 000^{\circ}P / vt = 33\ 000^{\circ}(.335\ hp) / (628.318\ ft/min);$$
 Wt = 17.6 lb

J = 0.53 (ver "tabla 10-6 [3]")

$$s_{t} = \frac{(17.6lb) * 20}{1 in * 0.53} * 1.25 * 1 * 1 * 1 * 1.11$$

 $s_t = 921.5 psi$

7.2.3.3. Segundo piñón

Debido a que el segundo piñón comparte el mismo eje que el primer engrane, se sabe que gira a la misma velocidad que este, la cual es 750 rpm.

Los cálculos son los siguientes:

Esfuerzo flexionante en dientes de engranes

$$s_{t} = \frac{WtPd}{FJ} K_{O} K_{S} K_{m} K_{B} K_{v}$$

Factor de sobrecarga

$$K_0 = 1.25$$

Factor de tamaño

$$K_S = 1$$

Factor de distribución de carga

$$K_m = 1$$

Relación de respaldo

$$mb = tr/ht = 0.2125/0.112;$$
 $mb = 1.89$

Factor de espesor de orilla

$$K_B = 1$$
; para mb > 1.2

Calculando la velocidad lineal y número de calidad

$$vt = \frac{D}{2} * w = \frac{0.8in}{2} * 750 \frac{rev}{min} * \frac{2\pi rad}{1 \text{ rev}} * \frac{1 \text{ ft}}{12 \text{ in}}$$
 $vt = 157.08 \text{ ft/min}$

Factor dinámico

$$K_{v} = 1.11$$

$$Wt = 33\ 000\ P / vt = 33\ 000^{*}(.335\ hp)/(628.318\ ft/min);$$
 $Wt = 17.6\ lb$

J = 0.46 (ver "tabla 10-6 [3]")

$$s_{t} = \frac{(17.61b) * 20}{1 in * 0.46} * 1.25 * 1 * 1 * 1 * 1.11$$

 $s_t = 1061.74 \text{ psi}$

7.2.3.4. Segundo engrane

Esta vez el engrane pasa por la segunda relación de reducción, la cual es de 6:1, por lo tanto la velocidad del engrane 2 es de 125 rpm.

Los cálculos son los siguientes:

Esfuerzo flexionante en dientes de engranes

$$s_{t} = \frac{WtPd}{FJ} K_{O} K_{S} K_{m} K_{B} K_{v}$$

Factor de sobrecarga

$$K_0 = 1.25$$

Factor de tamaño

$$K_S = 1$$

Factor de distribución de carga

$$K_m = 1$$

Relación de respaldo

$$mb = tr/ht = 1.4625/0.112;$$

mb = 13.058

Factor de espesor de orilla

$$K_B = 1$$
; para mb > 1.2

Calculando la velocidad lineal y número de calidad

$$vt = \frac{D}{2} * w = \frac{4.8in}{2} * 125 \frac{rev}{min} * \frac{2\pi rad}{1 rev} * \frac{1 ft}{12 in}$$
 $vt = 157.08 ft/min$

Factor dinámico

$$K_{v} = 1.04$$

$$Wt = 33\ 000^{\circ}P / vt = 33\ 000^{\circ}(.335\ hp)/(628.318\ ft/min);$$

Wt = 17.6 lb

J = 0.53 (ver "tabla 10-6[3]")

$$s_t = \frac{(17.61b) * 20}{1 in * 0.53} * 1.25 * 1 * 1 * 1 * 1.04$$

 $s_t = 863.396 psi$

7.2.3.5. Elección del material de los engranes

En los cálculos se aprecia que el esfuerzo mayor generado hacia los engranes es de 1176.52 psi, hay que tomar en cuenta que se pretende reducir el peso de la tracción del robot Pakal, por lo tanto debemos seleccionar materiales ligeros. En la Tabla 9 se enlistan materiales plásticos con sus respectivas resistencias a los esfuerzos flexionantes [3]:

Material	Sin carga	Carga de
Iviateriai	psi (Mpa)	vidrio
ABS	3000 (21)	6000 (41)
Acetal	5000 (34)	7000 (48)
Nylon	6000 (41)	12 000 (83)
Policarbonato	6000 (41)	9000 (62)
Poliéster	3500 (24)	8000 (55)
Poliuretano	2500 (17)	

Tabla 9. Esfuerzo admisible, aproximado en engranes de plástico.

"La combinación de fibras de vidrio y la matriz plástica del plástico funcionan como un material compuesto, y la cantidad de carga va, en forma característica, de 20% a 50%". [3]

En base a la Tabla 9 se observa que el plástico más resistente es el Nylon y además nos ofrece un amplio factor de seguridad. Así que se usará un material compuesto de nylon para el diseño del motorreductor. En este caso usaremos un nylon 6/6, el cual tiene una resistencia a la tensión de 12 400 psi.

Las ventajas de usar engranes plásticos son [3]:

- Menor peso
- Menor inercia
- Posibilidad de trabajar con poca o ninguna lubricación externa
- Funcionamiento más silencioso
- Resistencia química y capacidad de funcionar en ambientes corrosivos
- Capacidad de funcionar bien en condiciones de vibración, choques e impactos moderados.
- Adaptación a mayores tolerancias, por su resiliencia.

7.2.4. Cálculo de la masa del motorreductor

Una vez dibujado el motorreductor se sometió a un estudio de peso en Solidworks, el peso fue de 2.5 kg. Tal y como se observa en la Figura 16.

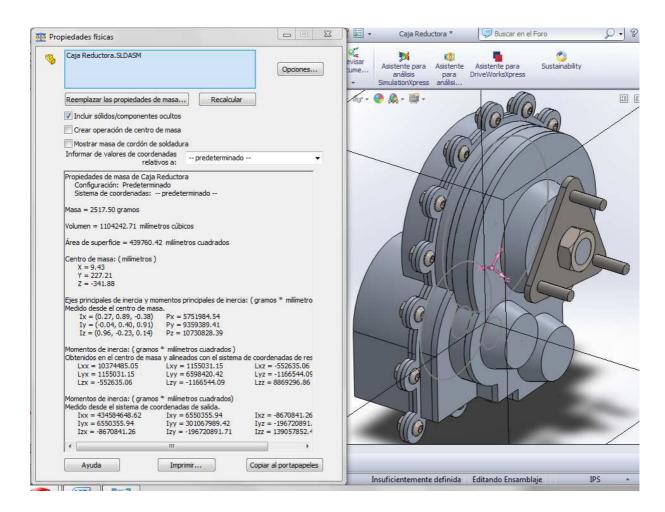


Figura 16. Estudio de peso del motorreductor en Solidworks.

7.2.5. Estimación final de reducción de peso.

Siguiendo con los datos de la Tabla 2, se tienen los pesos de los componentes de la tracción del robot Pakal, entre ellos se modificaron los rines y los motorreductores, dando como resultado pesos más ligeros para la tracción. En la Tabla 10 se muestra el peso final que tendrá la tracción con las modificaciones propuestas.

Componente	Masa	Número de	Masa del
Componente	(kg)	elementos	conjunto (kg)
Bastidor	4.3	1	4.3
Motor	1	4	4
Motorreductor	2.517	4	10.068
Rin	1.736	4	6.944
Aro y centro de rin	0.9	4	3.6
Total			28.912

Tabla 10. Estimación final de pesos

Hay que tomar en cuenta que falta encauchar los neumáticos para mejorar la tracción, pero debido a que estos no son pesados tenemos más de 1 kg disponible para poder sumarlos al peso.

Con los cálculos empleados, se observa que la reducción de peso estimada seria de más de 20 kg, puesto que la meta era reducir 20 kg. En este momento se ha logrado llegar a esa reducción de peso.

8. EVALUACIÓN DEL ESTADO FUNCIONAL

8.1. Diagrama funcional

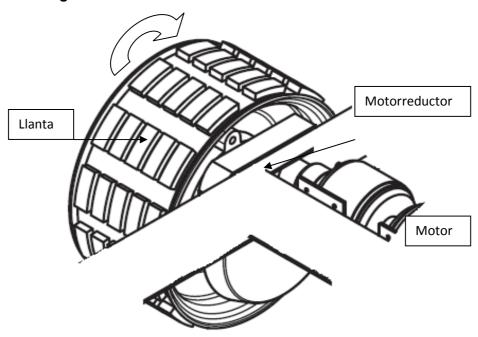


Figura 17. Conjunto motor, motorreductor y llanta.

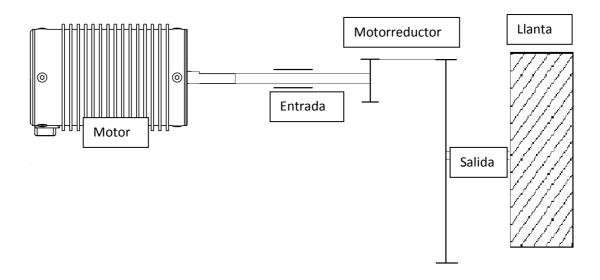


Figura 18. Esquema del estado funcional en cada llanta.

8.2. Estudio funcional de tolerancias

Es necesario establecer tolerancias a los componentes de la tracción que se han diseñado, ya que de esto depende la seguridad del ensamble. Por esta razón se muestra en este capítulo el método y el cálculo de las tolerancias que intervendrán en este diseño.

8.2.1. Tornillo de unión del motorreductor

Los componentes que intervienen en este ensamble son:

- Tuerca 1/4 20NC (Tu)
- Tapa de entrada (Ta1)
- Tapa de salida (Ta2)
- Junta (Ju)
- Tornillo
- JA

La variable JA es la tolerancia acumulada del ensamble de estas piezas, la cual se estableció de 1 o 2 cuerdas libres después de la tuerca, la cual tiene un paso de 0.05 pulgadas. El estudio de las tolerancias será en repartir el valor de JA entre los componentes del ensamble estudiado.

En la Figura 19 se muestra la secuencia de los componentes del ensamble estudiado.

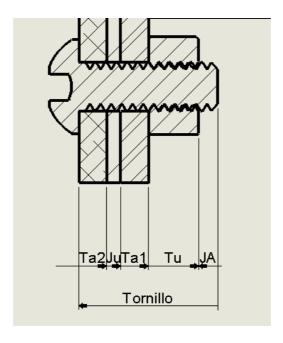


Figura 19. Esquema del estudio funcional de los tornillos del motorreductor.

En la Tabla 11 se muestra la suma de los espesores de los componentes

Componente	Espesor (in)
Tapa de salida	1/8
Junta	1/16
Tapa de entrada	1/8
Tuerca	15/64
Suma	35/64

Tabla 11. Espesores de los componentes del ensamble tornillo.

De la Tabla 11 se decidió usar un tornillo con longitud de 5/8, el cual nos da un JA de 5/64, el cual se repartirá en las tolerancias de las tapas y de la junta.

Así que las tolerancias serán para las tapas de 1/32 y para la junta de 1/64.

8.2.2. Árbol del piñón de entrada.

Los componentes que intervienen en este ensamble son:

- Rodamientos.
- Cajas donde embonan los rodamientos.
- Engrane.
- Espesor de los anillos de retención (EA).
- Ancho de ranura para anillos (AR).

En este caso los intervalos de tolerancias están seccionados por zonas específicas del ensamble, como se muestran a continuación:

- JB Juego entre la longitud de la caja y rodamiento
- JC Juego entre el largo del árbol y rodamiento
- JD Juego entre anillo y ranura
- JE Juego entre ranura y engrane

En la Tabla 12 se muestran los valores de los juegos acordados, en base a ello se distribuirá el intervalo de tolerancia entre los componentes que pertenezcan a la cadena correspondiente al juego especificado, tal y como se muestra en la Figura 20.

Juego	Tolerancias (in)		Intervalo de tolerancia
JB	Min	3/64	5/64
OB	Max	1/8	3,04
JC	Min	3/64	1/32
	Max	5/64	1,02
JD	Min	1/64	1/32
0.0	Max	3/64	1,02
JE	Min	1/64	7/64
OL.	Max	1/8	7,04

Tabla 12. Juegos acordados para la asignación de las tolerancias.

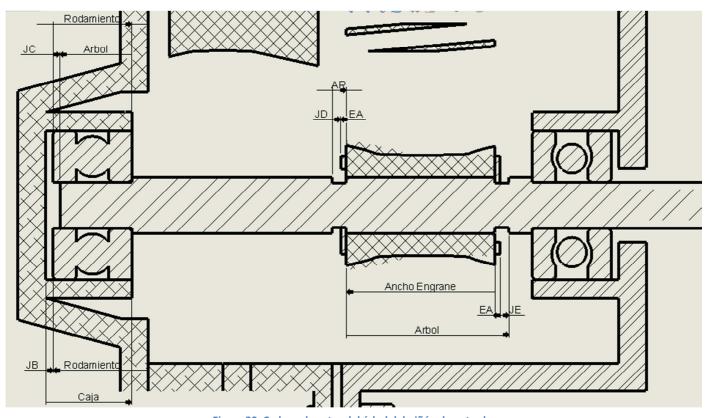


Figura 20. Cadena de cotas del árbol del piñón de entrada.

Las tolerancias se distribuyeron entre los componentes que forman parte de la cadena de cotas de cada juego. En la Tabla 13 se muestran las tolerancias para los componentes del árbol distribuyendo las tolerancias entre los componentes que se manufacturaran. En el caso de los componentes comprados se usaran las tolerancias del fabricante.

Juego	Componentes de la cadena	Tolerancias	
	Rodamiento		
JB	Caja	+1/8	
		+3/64	
	Rodamiento		
JC	Árbol	+5/64	
	Alboi	+3/64	
	Ancho de la ranura	+1/64	
JD	/ who is do in runding	0	
0.5	Espesor del anillo	+1/32	
	Loposon del drimo	0	
	Árbol	+3/64	
	, 11201	0	
JE	Ancho de la ranura	+1/64	
JL.	, mono do la fallara	0	
	Ancho de engrane	+3/64	
	7 3 10 10 do 011 granto	0	

Tabla 13. Tolerancias de los componentes de las cadenas de cotas analizadas.

En la Tabla 14 se muestra el modelo y las características de los anillos de retención y los rodamientos que se usarán para los árboles de entrada.

Componente	Modelo	Diámetro interior	tolerancia
Rodamiento	SKF-BA8	8 mm	P6
Anillo de retención	DIN 6799-DE-8	8 mm	-0.09 mm

Tabla 14. Modelos de los accesorios contemplados para el ensamble de la tracción.

8.2.3. Árbol del engrane de salida.

Otras tolerancias que se deben calcular son los del árbol de salida para asegurar que el engrane y la placa superior no rose con la tapa superior. También hay que tomar en cuenta las tolerancias que hay entre los rodamientos y los anillos de retención, los cuales ya están calculados en la Tabla 13.

En la Tabla 15 se muestran los juegos acordados para cada cadena de cotas del árbol del engrane de salida.

Juego	Tolerancias (in)		Intervalo de tolerancia	
JF	Min	3/64	5/64	
OI	Max	1/8	3/04	
JG	Min	5/64	1/8	
	Max	13/64	1/0	
JH	Min	5/64	1/8	
011	Max	13/64	170	

Tabla 15. Juegos acordados para la asignación de las tolerancias.

Los intervalos de tolerancias están seccionados por zonas específicas del ensamble, como se muestran a continuación:

- JF Juego entre extremo roscado, árbol, tuerca y placa superior.
- JG Juego entre placa superior y tapa
- JH Juego entre engrane e interior de la tapa

Los componentes que intervienen en este ensamble son:

- Tuerca de 3/4-16 NC (Tu)
- Placa superior (Pla)
- Árbol (varias secciones de él)
- Rodamiento (Ro)
- Espesor de la tapa (ET)
- Tapa
- Ancho de engrane
- Espesor del anillo de retención (EA)

En la Tabla 17 se muestran las tolerancias para los componentes del árbol distribuyendo el juego de la cadena de cotas entre los componentes que se manufacturaran. En el caso de los componentes comprados se usaran las tolerancias del fabricante.

En la Figura 21 se muestra la forma en que están compuestas las cadenas de cotas para cada juego de la Tabla 15.

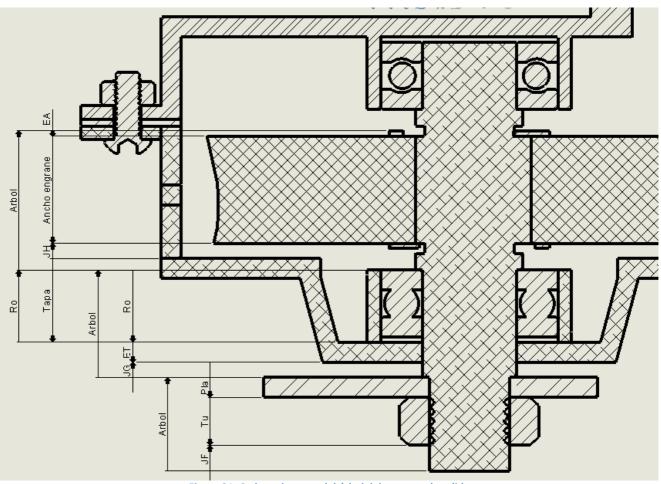


Figura 21. Cadena de cotas del árbol del engrane de salida.

Puesto que este árbol es de mayor diámetro que el de la Figura 20 hay cambio en el modelo de los rodamientos y los anillos de retención, los cuales se muestran en la Tabla 16.

Componente	Modelo	Diámetro interior	tolerancia
Rodamiento	SKF-O6	3/4 in	P6
Anillo de retención	DIN 6799-DE-19	19 mm	-0.13 mm

Tabla 16. Modelos de los accesorios contemplados para el ensamble de la tracción

Juego	Componentes de la cadena	Tolerancias	
	Tuerca		
JF	Placa superior	+3/64	
31	Tiaca superior	0	
	Árbol	+2/64	
	Alboi	0	
	Espesor de la tapa	+1/16	
JG	Espesor de la tapa	0	
30	Rodamiento		
	Árbol	+1/16	
	Alboi	0	
	Tapa	+1/32	
	Тара	0	
	Ancho de engrane	+3/64	
	7 thorio de engrane	0	
JH	Espesor del anillo	+1/32	
	Lapesor del armio	0	
	Árbol	+1/64	
	Alboi	0	
	Rodamiento		

Tabla 17. Tolerancias de los componentes de las cadenas de cotas analizadas.

8.2.4. Tolerancia de engranes.

Las tolerancias permitidas para los engranes helicoidales se obtuvieron de la norma AGMA 2000-A88 [3] los cuales se enlistan en la Tabla 18.

Numero de Calidad	Paso	Numero de dientes		
AGMA	diametral	20 60 100		100
Q10	20	0.0014	0.0016	0.0017

Tabla 18. Valores seleccionados de tolerancia compuesta total (equivalencias métricas).

8.2.5. Tolerancia de los árboles y las cuñas.

Las cuñas usadas en el ensamble del motorreductor se muestran en la Tabla 19, ahí mismo se enlistan sus respectivas tolerancias [4]. Para este caso se sugieren cuñas cuadradas.

Diámetro del árbol (in)	Cuña usada (in)	Tolerancia de la cuña (in)	Tolerancia del árbol (in)
3/8	a = 3/32 b = 3/32 x 0.75 Lg.	h9 sobre a h9 sobre b	H9 sobre a H9 sobre b
3/8	a = 3/32 b = 3/32 x 1.875 Lg.	h9 sobre a h9 sobre b	H9 sobre a H9 sobre b
1	a = 1/4 b = 1/4 x 0.75 Lg.	h9 sobre a h11 sobre b	H9 sobre a H11 sobre b

Tabla 19. Cuñas usadas para los arboles del motorreductor.

Las tolerancias se distribuyen tal y como se muestra en el ejemplo de la Figura 22.

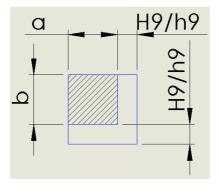


Figura 22. Tolerancias entre el árbol y la cuña de 3/32 x 3/32.

9. OPTIMIZACION DEL TORQUE DE TRACCION

La velocidad actual del robot Pakal estimada es de 0.65 m/s según el reporte del diseño de la tracción del robot [1]. La velocidad final que se obtendría usando el motorreductor que se calculó en el capítulo 8 es la siguiente:

Datos

Velocidad de salida = 125 rpm

Diámetro de rin = 11 in = 0.2794m

Radio de rin = 0.1397m

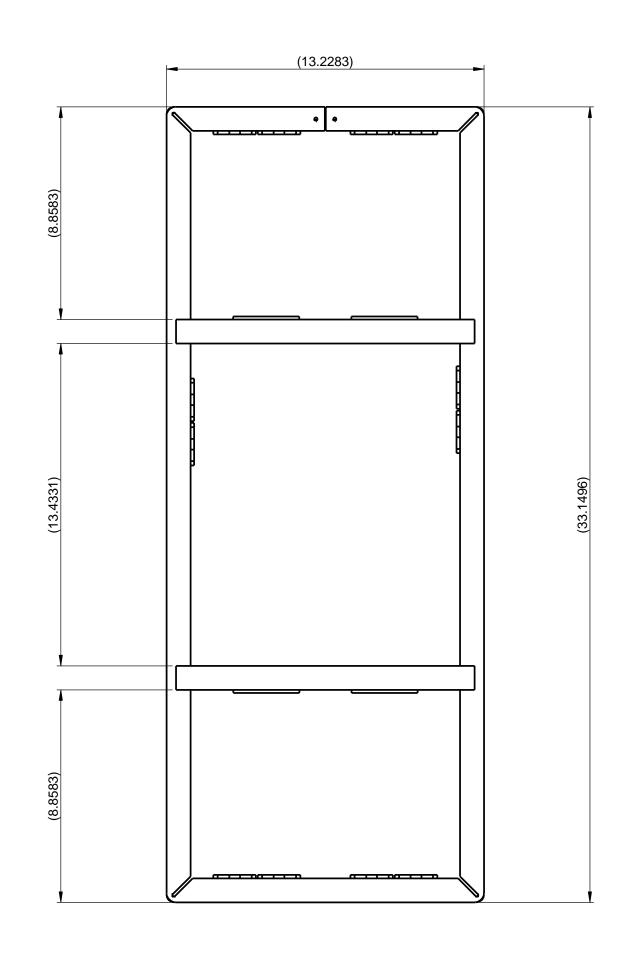
Velocidad angular =
$$125 \frac{\text{rev}}{\text{min}} * \frac{2\pi \text{ rad}}{1 \text{ rev}} * \frac{1 \text{ min}}{60 \text{ s}} = 13.09 \text{ rad/s}$$

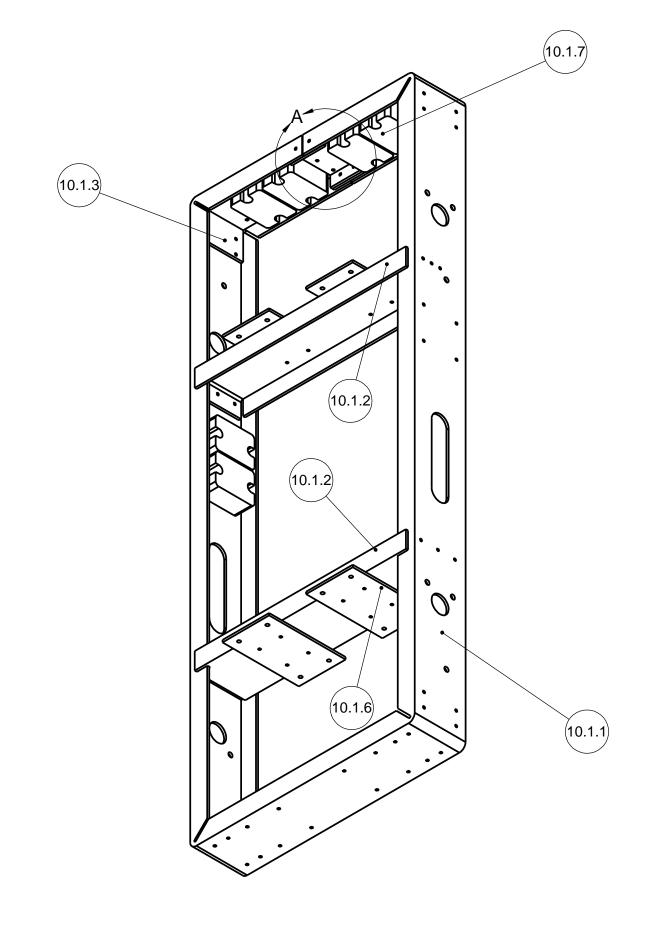
Velocidad lineal = velocidad angular * radio =
$$13.09 \frac{\text{rad}}{\text{s}} * 0.1397 \text{m} = 1.8286 \text{ m/s}$$

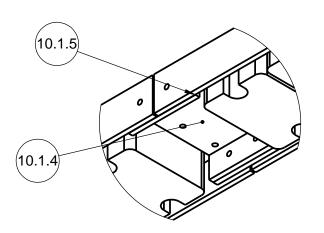
Tal y como se muestra en el cálculo anterior el torque final del motorreductor propuesto incrementara notablemente la velocidad lineal final en más del doble.

Otro implemento para mejorar la tracción es la adición de banda precurada a cada uno de los rines. La banda es la siguiente:

Figura 23. Banda precurada que se adicionara a los rines del robot Pakal [6].

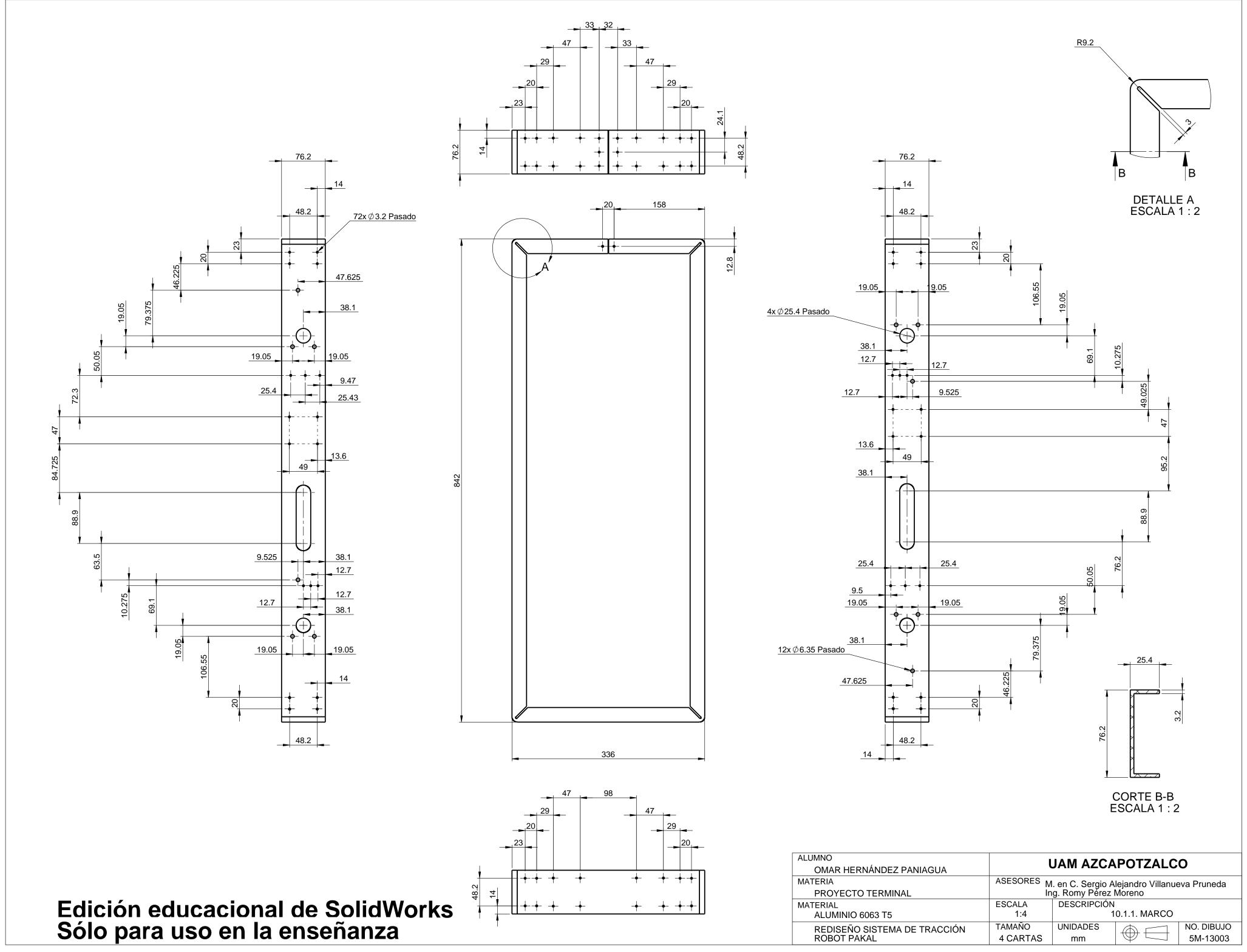

La banda precurada que se muestra en la Figura 23 está a la venta por la empresa Vipal, y se sugiere la compra de dicha banda o una similar para mejorar la tracción en el terreno de la competencia.

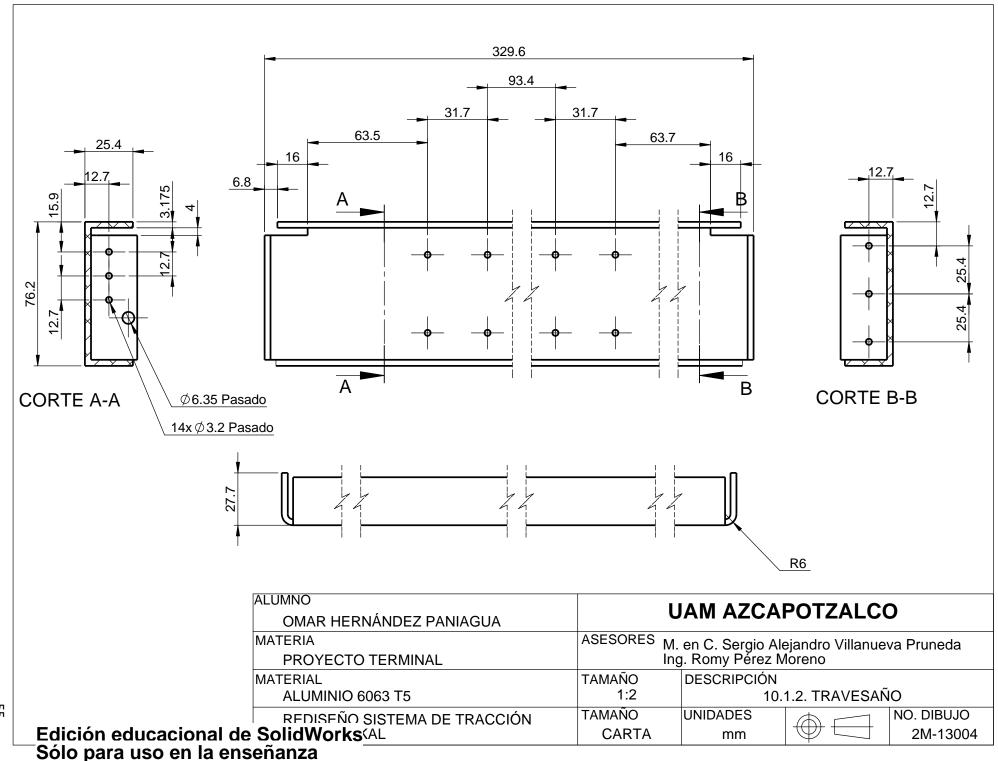

Esta banda de rodamiento está desarrollada para neumáticos radiales y diagonales de vehículos livianos fuera de carretera, con tracción lateral incorporada. Tiene excelente desempeño en terrenos accidentados, inclusive con barro.

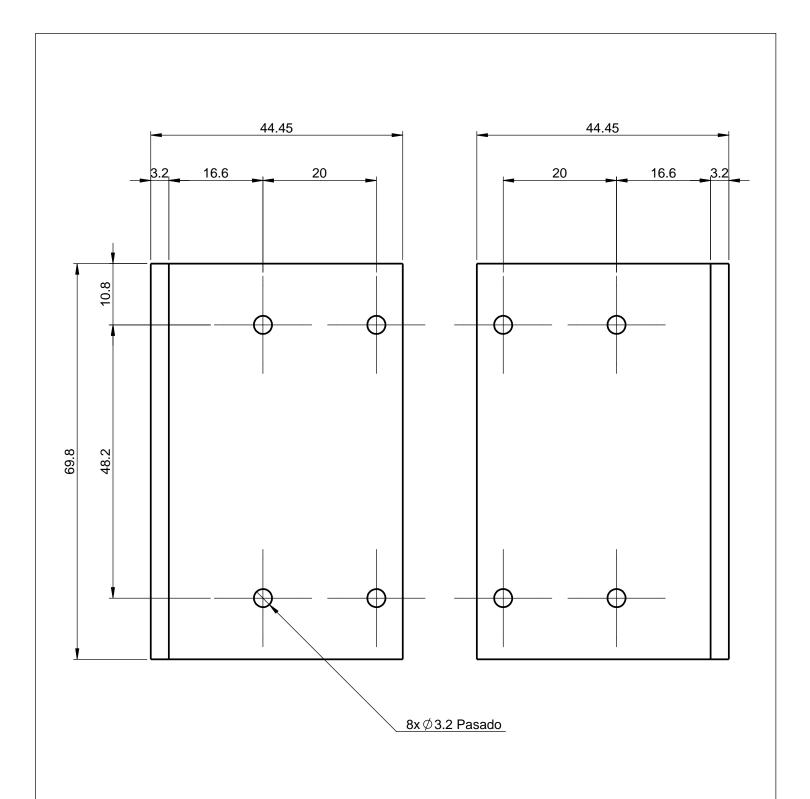

10. DEFINICION DE PARTES

NO.	CANTIDAD	NOMBRE	MATERIAL	NO. DE DIBUJO
10.1	1	BASTIDOR	VARIOS	5M-13002
10.1.1	1	MARCO	ALUMINIO 6063-T5	5M-13003
10.1.2	2	TRAVESAÑO	ALUMINIO 6063-T5	2M-13004
10.1.3	4	ESQUINERO	ALUMINIO 6063-T5	2M-13005
10.2.4	1	REFUERZO BASTIDOR	ALUMINIO 6063-T5	2M-13006
10.1.5	2	CALZA REFUERZO BASTIDOR	ALUMINIO 6063-T5	2M-13007
10.1.6	4	CALZA MOTOR	ALUMINIO 6063-T5	2M-13008
10.1.7	12	REELEVADOR	VARIOS	2M-13009
10.2	4	RUEDA	VARIOS	4M-13010
10.2.1	4	RIN	ALUMINIO 6063-T5	2M-13011
10.2.2	4	ARO DE RIN	NO ESPECIFICADO	2M-13012
10.2.3	4	CENTRO DE RIN	NO ESPECIFICADO	2M-13013
10.3	4	MOTORREDUCTOR	VARIOS	5M-13014
10.3.1	4	TAPA SUPERIOR	ALUMINIO 6061-T6	5M-13015
10.3.2	4	TAPA INFERIOR	ALUMINIO 6061-T6	5M-13016
10.3.3	4	ARBOL PIÑON DE ENTRADA	ACERO AL CARBON	2M-13017
10.3.4	4	ARBOL ENGRANE DE ENTRADA	ACERO AL CARBON	2M-13018
10.3.5	4	ARBOL ENGRANE DE SALIDA	ALUMINIO 6061-T6	2M-13019
10.3.6	4	CALZA ENGRANE	ALUMINIO 6061-T6	2M-13020
10.3.7	8	PIÑON	NYLON 6/6	2M-13021
10.3.8	4	ENGRANE DE ENTRADA	NYLON 6/6	2M-13022
10.3.9	4	ENGRANE DE SALIDA	NYLON 6/6	2M-13023
10.3.10	-	PRIMER PASO REDUCCION	-	2M-13024
10.3.11	-	SEGUNDO PASO REDUCCION	-	2M-13025
10.3.12	4	PLACA SUPERIOR	ACERO AL CARBON	2M-13026
10.3.13	1	JUNTA	NEOPRENO	2M-13027
10.4	4	COPLE	NYLAMID	2M-13028
10.5	1	ENSAMBLE GENERAL TRACCION	VARIOS	5M-13029
ALUMNO			IAM AZOADOTZ	

OMAR HERNÁNDEZ PANIAGUA		UAM AZCAPOTZALCO			
MATERIA	ASESORES N	/l. en C. Sergio Alejandro ng. Romy Pérez Moreno	Villanueva Pruneda		
PROYECTO TERMINAL	Ir	ng. Romy Pérez Moreno			
MATERIAL	ESCALA	DESCRIPCIÓN			
		10. CONTRO	L DE DIBUJOS		
REDISEÑO SISTEMA DE TRACCIÓN	TAMAÑO	UNIDADES	NO. DIBUJO		
Edición educacional de SolidW			2M-13001		
Sólo para uso en la enseñanza			52		

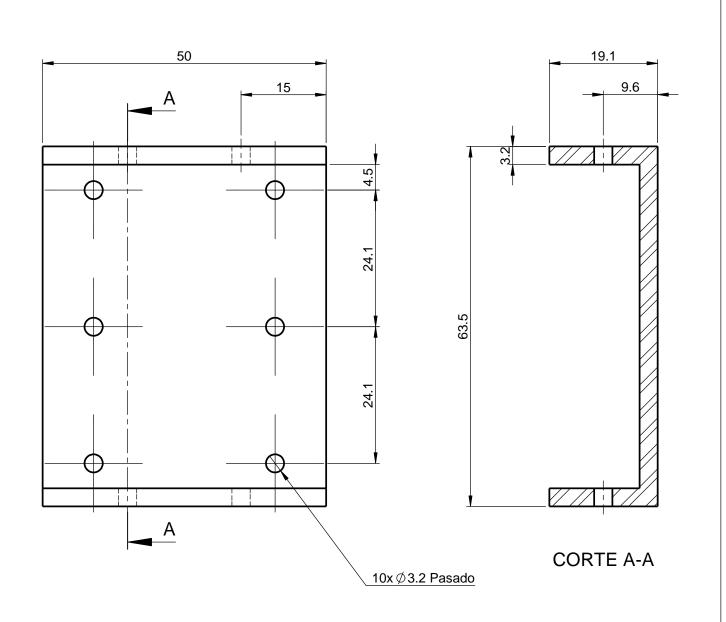


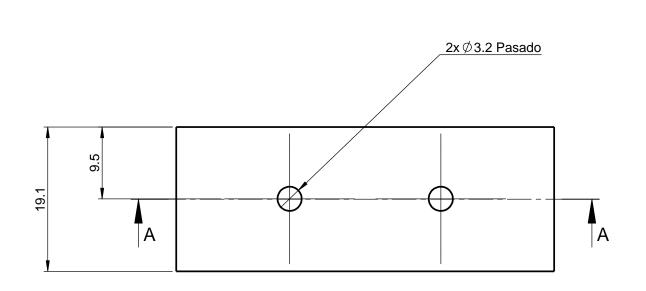

DETALLE A ESCALA 1 : 2

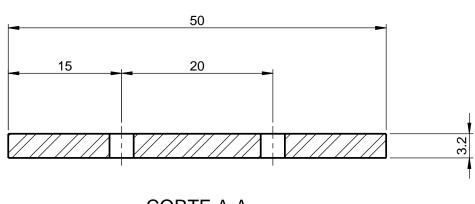

ALUMNO	,	UAM A	ZCAPOTZALC	O
No. de pieza	Cantidad	Nombre	Material	No. de dibujo
10.1.1	1	Marco	Aluminio 6063-T5	5M-13003
10.1.2	2	Travesaño	Aluminio 6063-T5	2M-13004
10.1.3	4	Esquinero	Aluminio 6063-T5	2M-13005
10.1.4	1	Refuerzo bastidor	Aluminio 6063-T5	2M-13006
10.1.5	2	Calza refuerzo bastidor	Aluminio 6063-T5	2M-13007
10.1.6	4	Calza motor	Aluminio 6063-T5	2M-13008
10.1.7	12	Reelevador	Aluminio 6063-T5	2M-13009
80	72	Remache pop de 1/8		

Dibujo separado de SolidWorks - Impresión no sincronizada o Alejandro Villanueva Pruneda ez Moreno

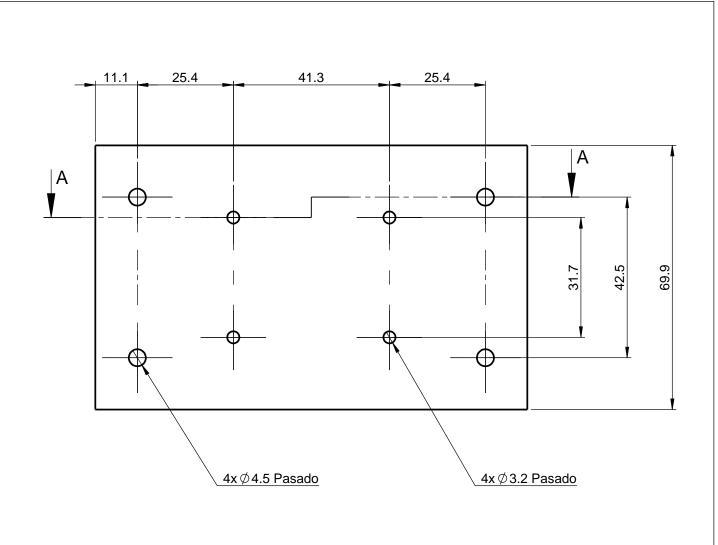
ALUMINIO 6063 T5	1:4	10	0.1. BASTIDOR	
REDISEÑO SISTEMA DE TRACCIÓN ROBOT PAKAL	TAMAÑO 4 CARTAS	UNIDADES mm	\oplus	NO. DIBUJO 5M-13002

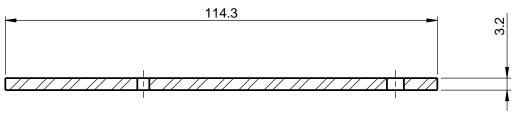





ALUMNO OMAR HERNÁNDEZ PANIAGUA	U	UAM AZCAPOTZALCO			
MATERIA PROYECTO TERMINAL	ASESORES M.	. en C. Sergio Ale g. Romy Pérez M	ejandro Villanuev Noreno	va Pruneda	
MATERIAL ALUMINIO 6063 T5	ESCALA 1.5:1	DESCRIPCIÓN 1	0.1.3. ESQUINE	RO	
REDISEÑO SISTEMA DE TRACCIÓN Edición educacional de SolidW	TAMAÑO OrksCARTA	UNIDADES mm		NO. DIBUJO 2M-13005	

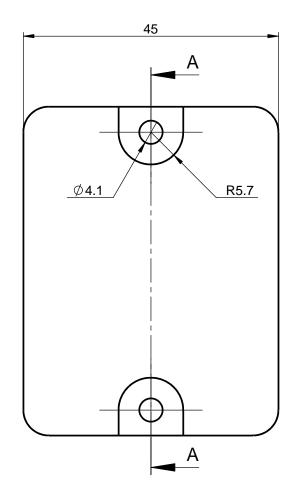
Sólo para uso en la enseñanza

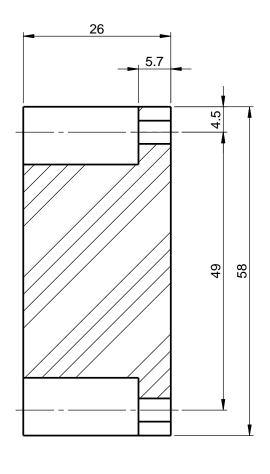

ALUMNO	11/		DOTZAL (20
OMAR HERNÁNDEZ PANIAGUA	U	AM AZCA	POIZAL	,0
MATERIA	ASESORES M.	en C. Sergio Ale	ejandro Villanue	/a Pruneda
PROYECTO TERMINAL	Ing	en C. Sergio Ale g. Romy Pérez M	loreno	
MATERIAL	ESCALA	DESCRIPCIÓN		
ALUMINIO 6063 T5	1.5:1	10.1.4. F	REFUERZO BAS	STIDOR
REDISEÑO SISTEMA DE TRACCIÓN	TAMAÑO	UNIDADES	A [NO. DIBUJO
Edición educacional de SolidWorks		mm		2M-13006
Sólo para uso en la enseñanza				57



CO	K	I⊏	A-	·A

ALUMNO		A B A A Z O A	DOTZAL C	20	
OMAR HERNÁNDEZ PANIAGUA		UAM AZCAPOTZALCO			
MATERIA	ASESORES M	. en C. Sergio Al	ejandro Villanuev	va Pruneda	
PROYECTO TERMINAL	In	ASESORES M. en C. Sergio Alejandro Villanueva Pruneda Ing. Romy Pérez Moreno			
MATERIAL	ESCALA	DESCRIPCIÓN			
ALUMINIO 6063 T5	2:1	10.1.5. CA	LZA REFUERZO	BASTIDOR	
REDISEÑO SISTEMA DE TRACCIÓN	TAMAÑO	UNIDADES		NO. DIBUJO	
Edición educacional de SolidWorksCARTA		mm		2M-13007	
Sólo para uso en la enseñanza				58	

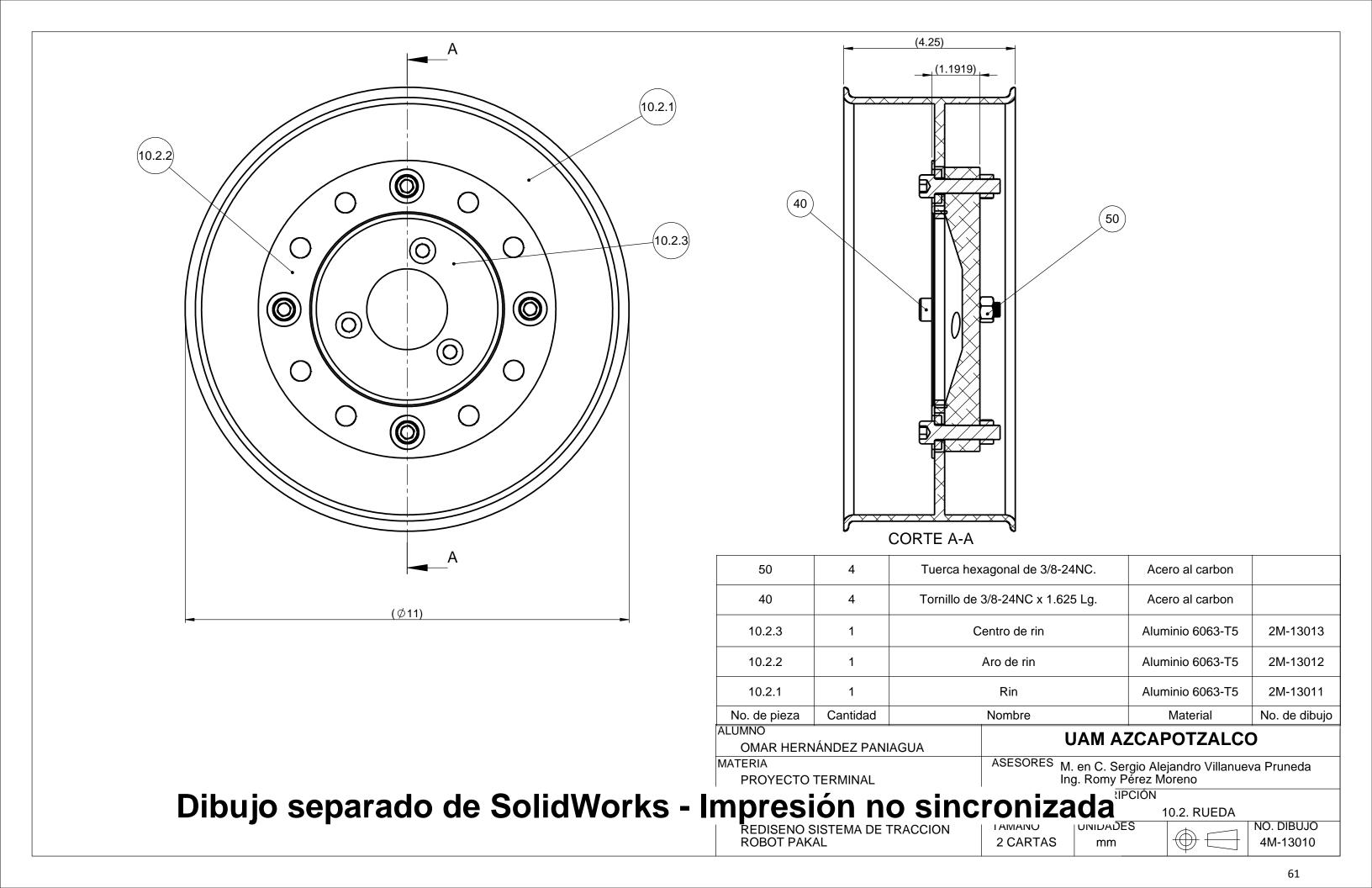


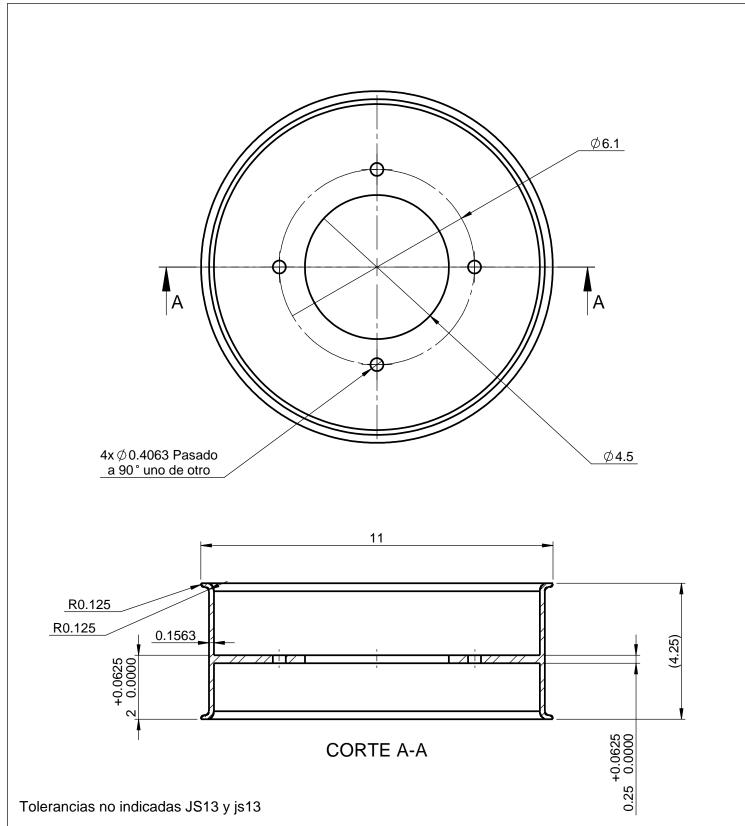


CORTE A-A

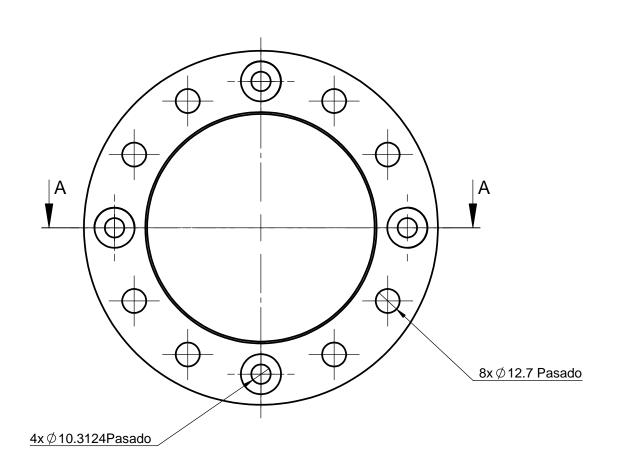
OMAR HERNÁNDEZ PANIAGUA	U	UAM AZCAPOTZALCO			
MATERIA PROYECTO TERMINAL	ASESORES N	1. en C. Sergio Ale ng. Romy Pérez M	ejandro Villanuev Ioreno	/a Pruneda	
MATERIAL ALUMINIO 6063 T5	ESCALA 1:1	DESCRIPCIÓN 10.	1.6. CALZA MO	TOR	
REDISEÑO SISTEMA DE TRACCIÓN Edición educacional de SolidW Sólo para uso on la enseñanza	TAMAÑO OrksCARTA	UNIDADES mm		NO. DIBUJO 2M-13008	

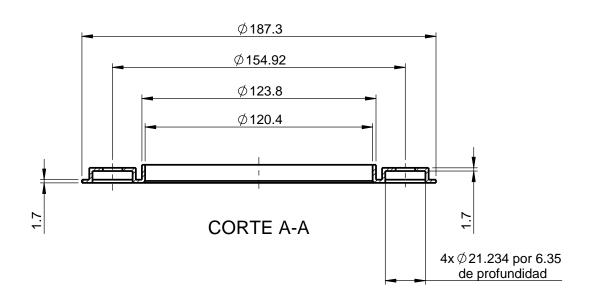
Sólo para uso en la enseñanza

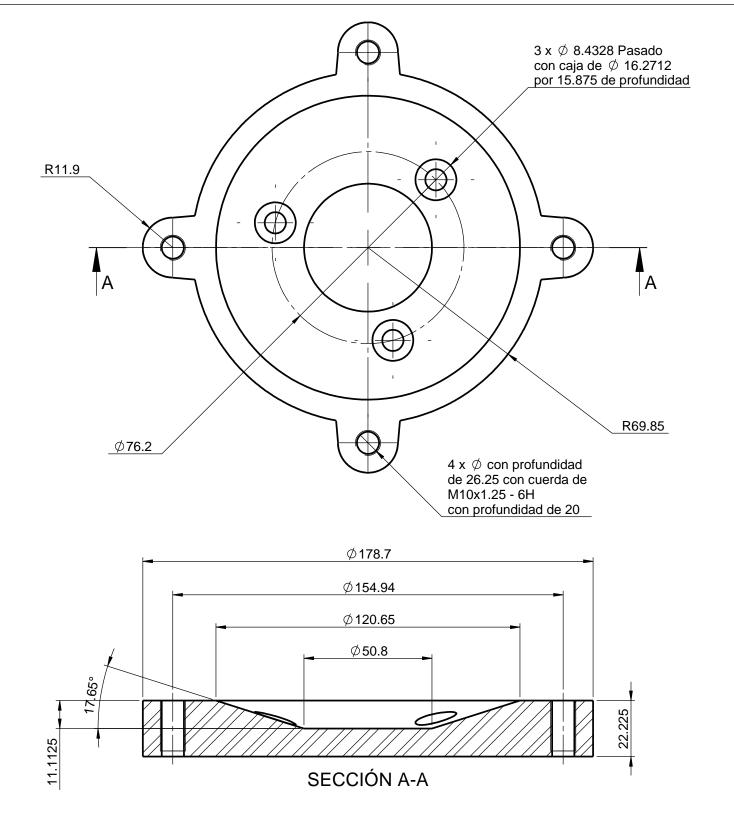




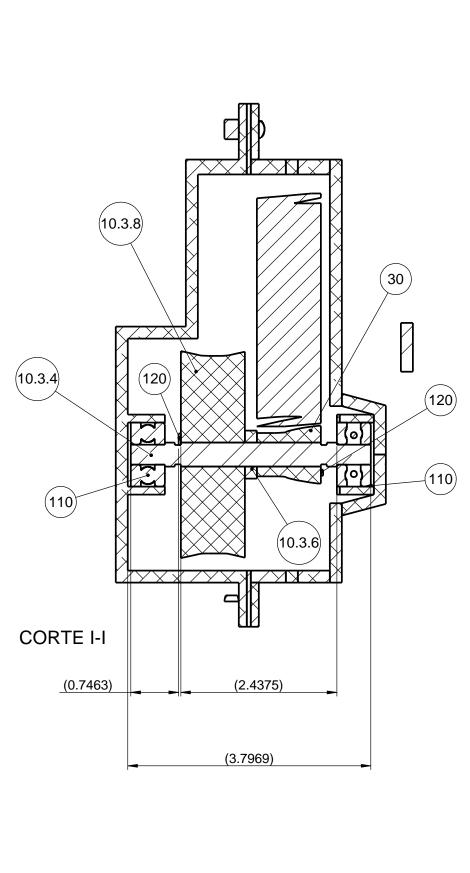
CORTE A-A

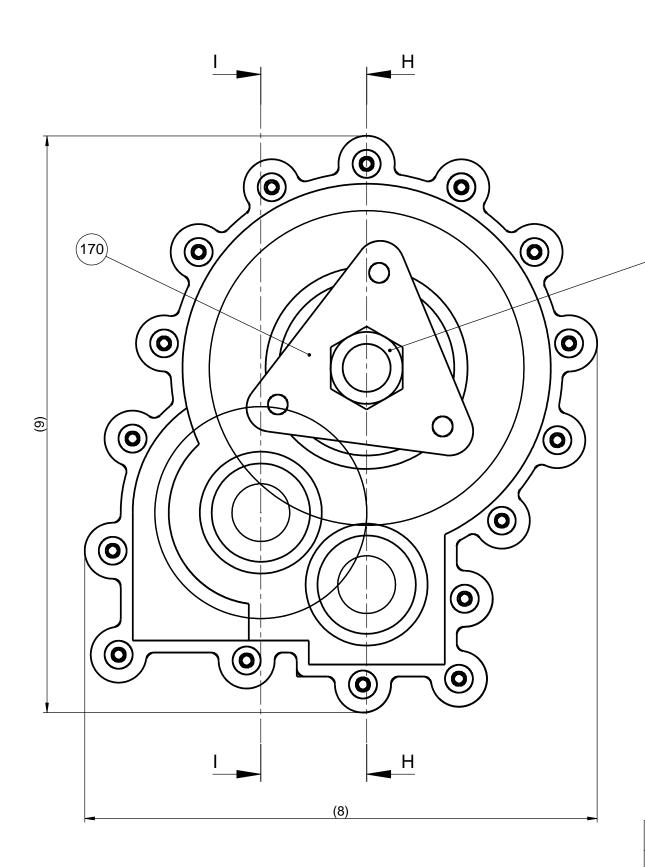

ALUMNO			DOTZAL C	`^
OMAR HERNÁNDEZ PANIAGUA	UAM AZCAPOTZALCO			
MATERIA	ASESORES M. en C. Sergio Alejandro Villanueva Pruneda			
PROYECTO TERMINAL	ASESORES M. en C. Sergio Alejandro Villanueva Pruneda Ing. Romy Pérez Moreno			
MATERIAL	ESCALA			
SIN ESPECIFICAR	1.5:1	10.1	.7. REELEVADO	DR
REDISEÑO SISTEMA DE TRACCIÓN	TAMAÑO	UNIDADES		NO. DIBUJO
Edición educacional de SolidWo	rks <u>CARTA</u>	mm		2M-13009

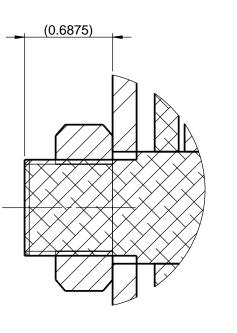

Sólo para uso en la enseñanza

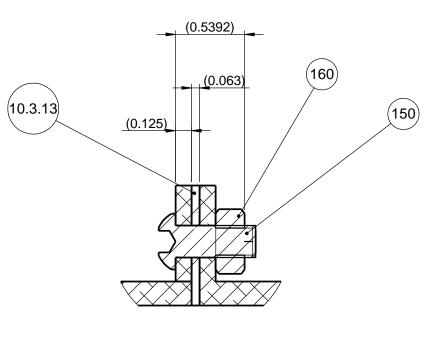


ALUMNO		A B A A A A A A	DOTZAL (20	
OMAR HERNÁNDEZ PANIAGUA		UAM AZCAPOTZALCO			
MATERIA	ASESORES M	ASESORES M. en C. Sergio Aleiandro Villanueva Pruneda			
PROYECTO TERMINAL	In	ASESORES M. en C. Sergio Alejandro Villanueva Pruneda Ing. Romy Pérez Moreno			
MATERIAL	TAMAÑO	DESCRIPCIÓN			
ALUMINIO 6061 T6	1:3		10.2.1. RIN		
REDISEÑO SISTEMA DE TRACCIÓN	TAMAÑO	UNIDADES		NO. DIBUJO	
Edición educacional de SolidWorksCART		inches		2M-13011	
Sólo para uso en la enseñanza		_	_	62	






ALUMNO		1 1 1 7 C A	DOT7AL (20
OMAR HERNÁNDEZ PANIAGUA	U	UAM AZCAPOTZALCO		
MATERIA	ASESORES M.	ASESORES M. en C. Sergio Alejandro Villanueva Pruneda Ing. Romy Pérez Moreno		
PROYECTO TERMINAL	Ing	g. Romy Pěrez N	Moreno	
MATERIAL	ESCALA	DESCRIPCIÓN		
ALUMINIO 6063 T5	1:2	10).2.2. ARO DE R	IN
REDISEÑO SISTEMA DE TRACCIÓN	TAMAÑO	UNIDADES		NO. DIBUUJO
Edición educacional de SolidW		mm		2M-13012
Sólo para uso en la enseñanza				63


ALUMNO OMAR HERNÁNDEZ PANIAGUA	U	UAM AZCAPOTZALCO			
MATERIA PROYECTO TERMINAL	ASESORES M. en C. Sergio Alejandro Villanueva Pruneda Ing. Romy Pérez Moreno				
MATERIAL ALUMINIO 6063 T5	ESCALA 1:1.5	DESCRIPCIÓN 10.2	.3. CENTRO DE	E RIN	
REDISEÑO SISTEMA DE TRACCIÓN Edición educacional de SolidWe	TAMAÑO Orks CARTA	UNIDADES mm		NO. DIBUJO 2M-13013	
Sólo para uso en la enseñanza				64	

	170	1	Placa superior	Acero al carbón	2M-13026
	160	16	Tuerca hexagona 1/4-20NC	Acero al carbón	
(0.5392)	150	16	Tornilo hexagonal 1/4-20NC x 5/8 lg.	Acero al carbón	
(0.0002)	140	2	Anillo de retención DIN 6799-DE-19	No especificado	
(160)	130	2	Rodamiento SKF-O6	Varios	
(0.405)	120	4	Anillo de retención DIN 6799-DE-8	No especificado	
(0.125)	110	4	Rodamiento SKF-BA8	Varios	
	10.3.13	1	Junta	Neopreno	2M-13027
	10.3.1	1	Tapa superior	Aluminio 6061-T6	5M-13016
	10.3.9	1	Engrane de salida	Nylon 6/6	2M-13023
	10.3.5	1	Árbol engrane de salida	Aluminio 6061-T6	2M-13019
	10.3.6	1	Calza engrane	Aluminio 6061-T6	2M-13020
	10.3.8	1	Engrane de entrada	Nylon 6/6	2M-13022
DETALLE K	10.3.5	1	Árbol engrane de entrada	Acero al carbón	2M-13018
ESCALA 2: 1.5	10.3.7	2	Piñón	Nylon 6/6	2M-13021
	10.3.3	1	Árbol piñon de entrada	Acero al carbón	2M-13017
	10.3.2	1	Tapa inferior	Aluminio 6061-T6	5M-13015

UAM AZCAPOTZALCO Dibujo separado de SolidWorks - Impresión no sincronizada ex Moreno

REDISEÑO SISTEMA DE TRACCIÓN TAMAÑO UNIDADES NO. DIBUJO 5M-13014	ALUMINIO 6063 T5	1:1.5	10.3. MOTORREDUCTOR			

(1.0154) (0.875) (1.25)

(10.3.9)

(10.3.1)

(110)

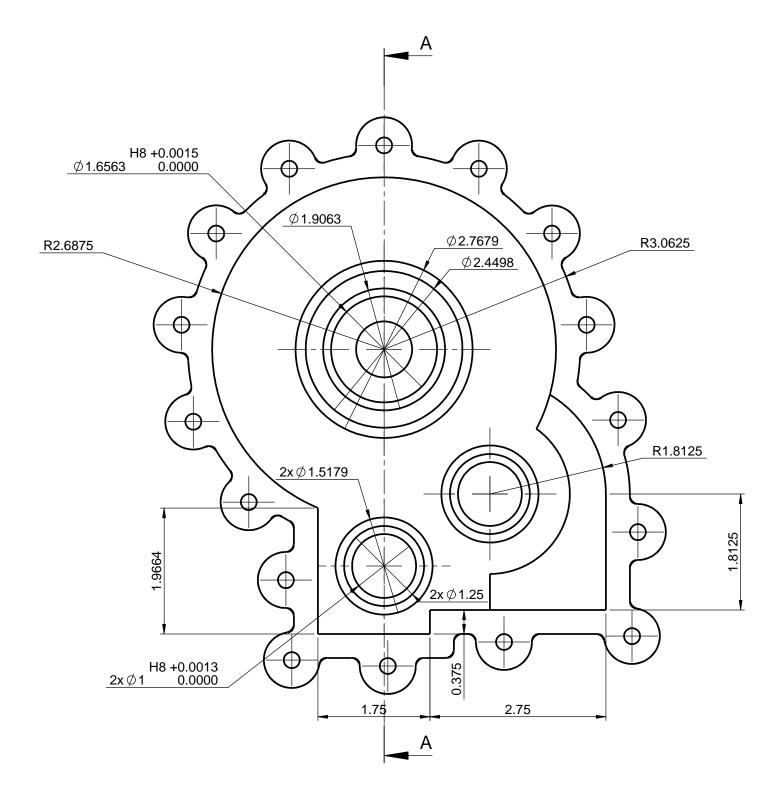
(1.4025)

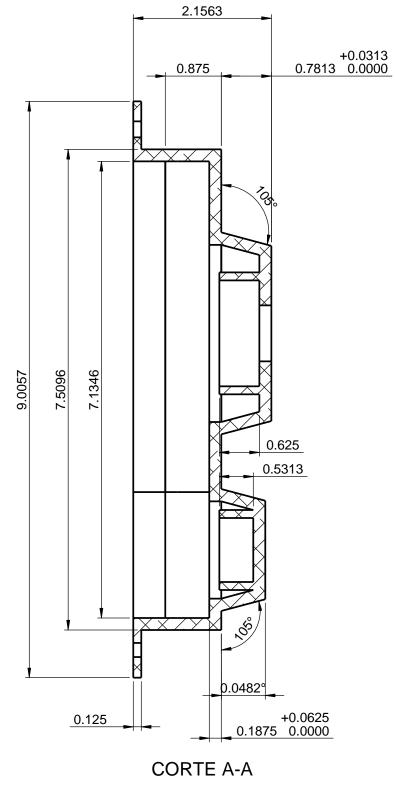
Tuerca hexagonal 3/4-16NC

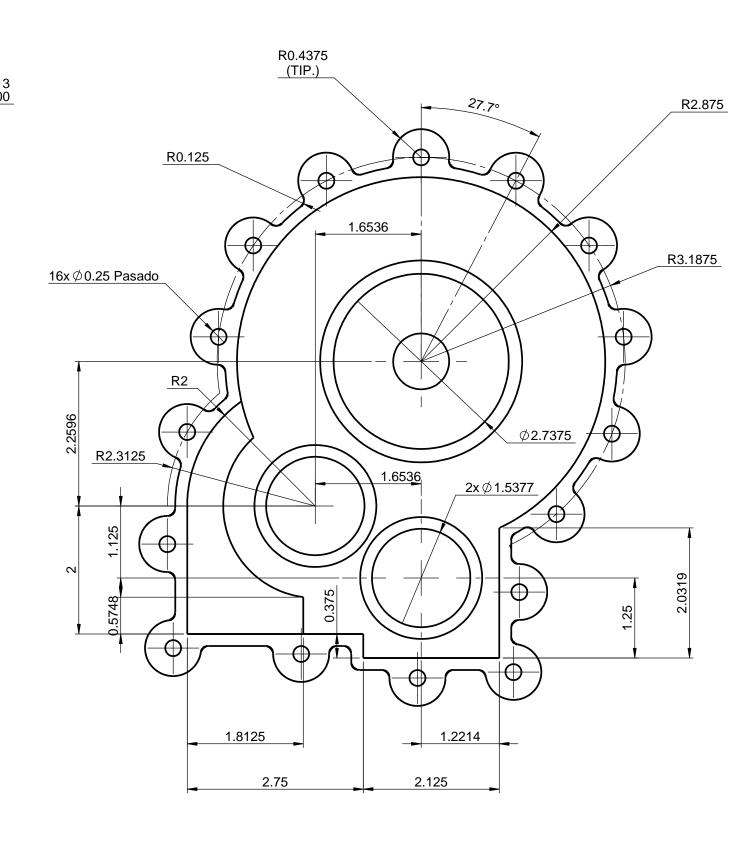
(6.25)

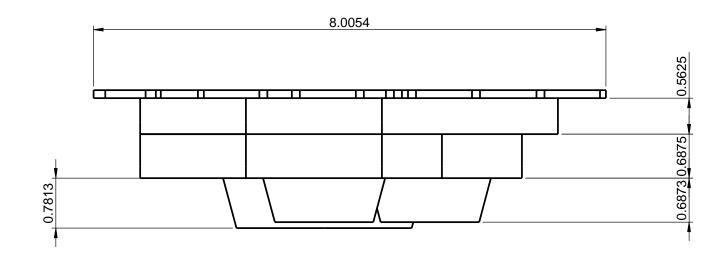
(4.906)

Acero al carbón

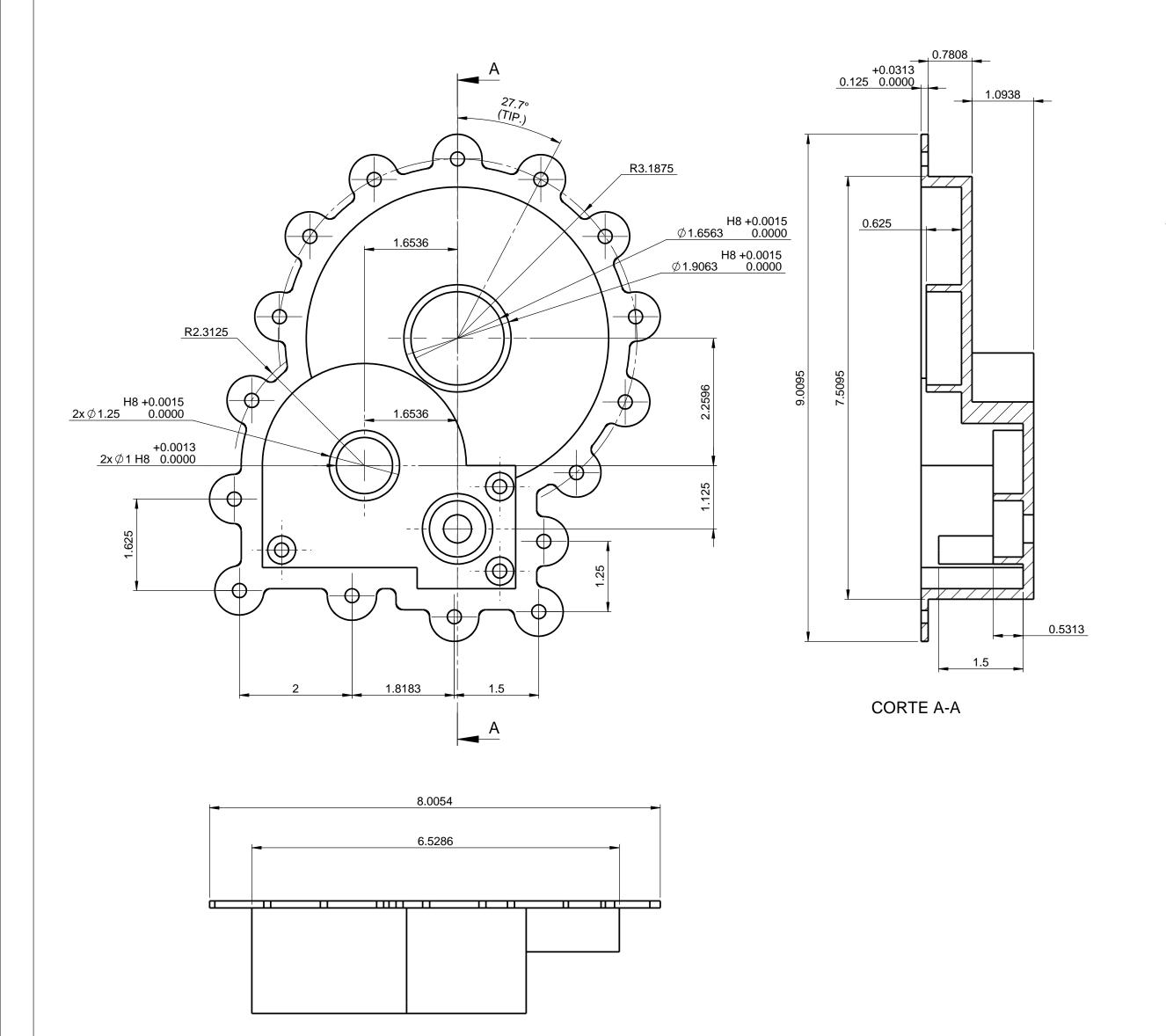

CORTE H-H

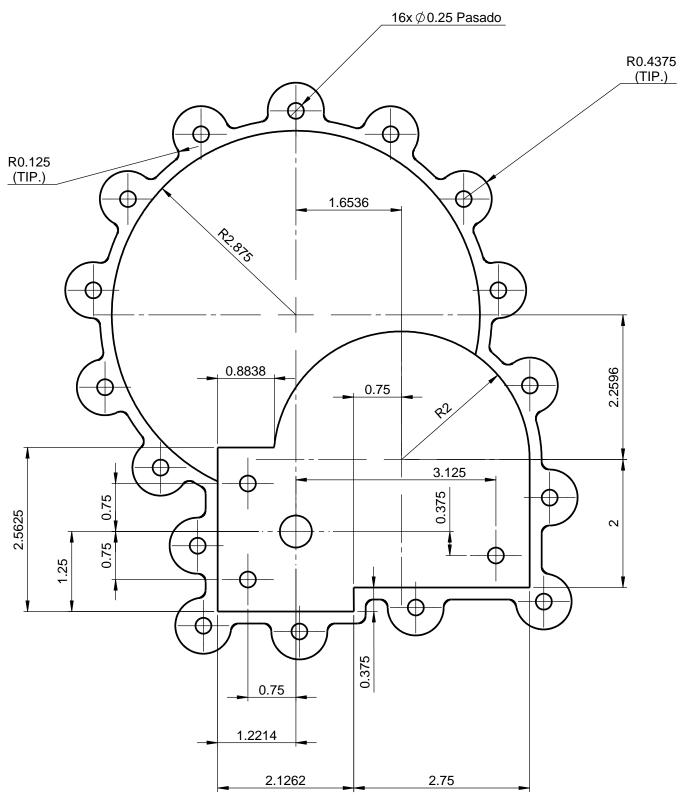

(180)


(10.3.2)


(10.3.3)

No. de dibujo

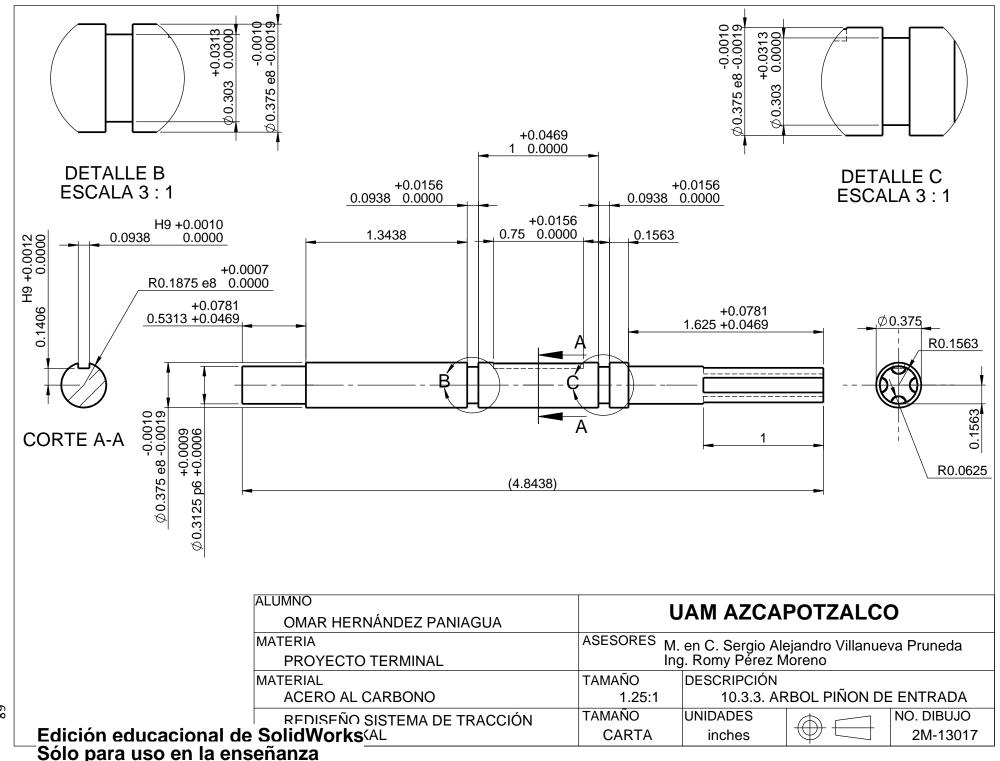


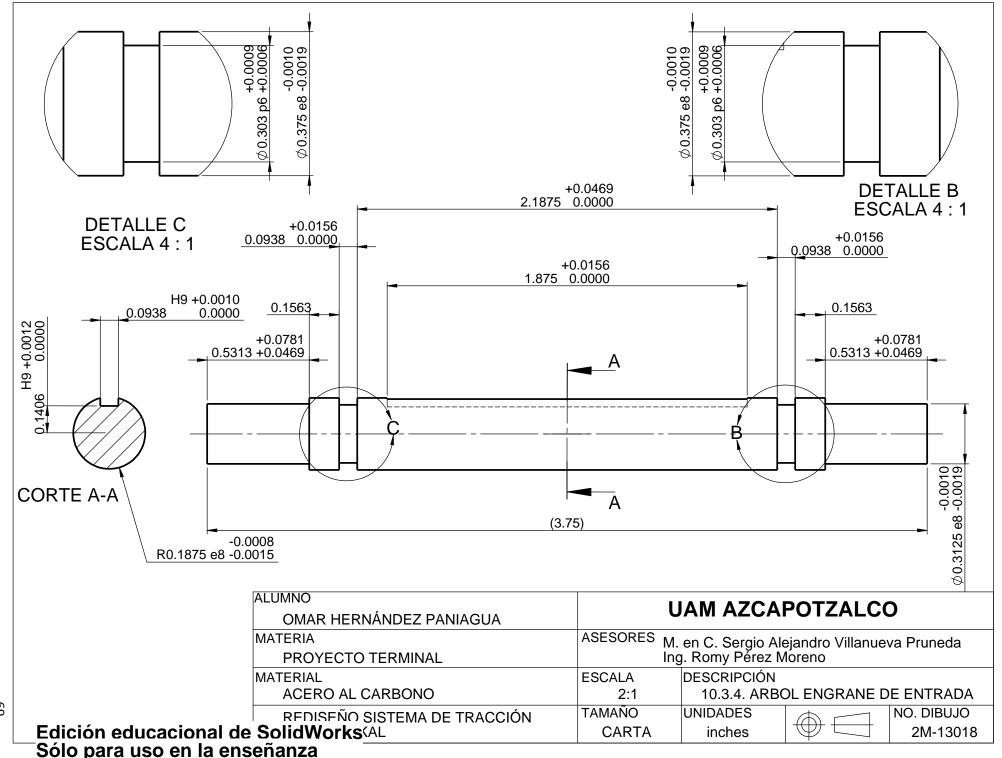

Notas:

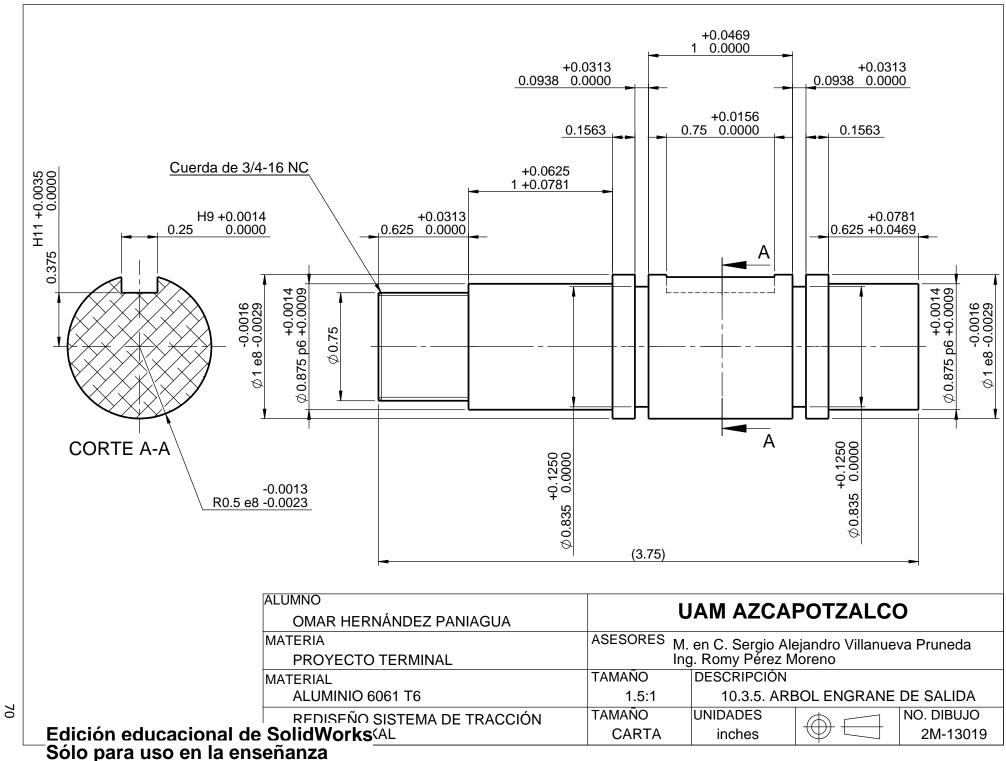
Todos los radios interiores son de 1/8. Tolerancias no indicadas JS13 y js13.

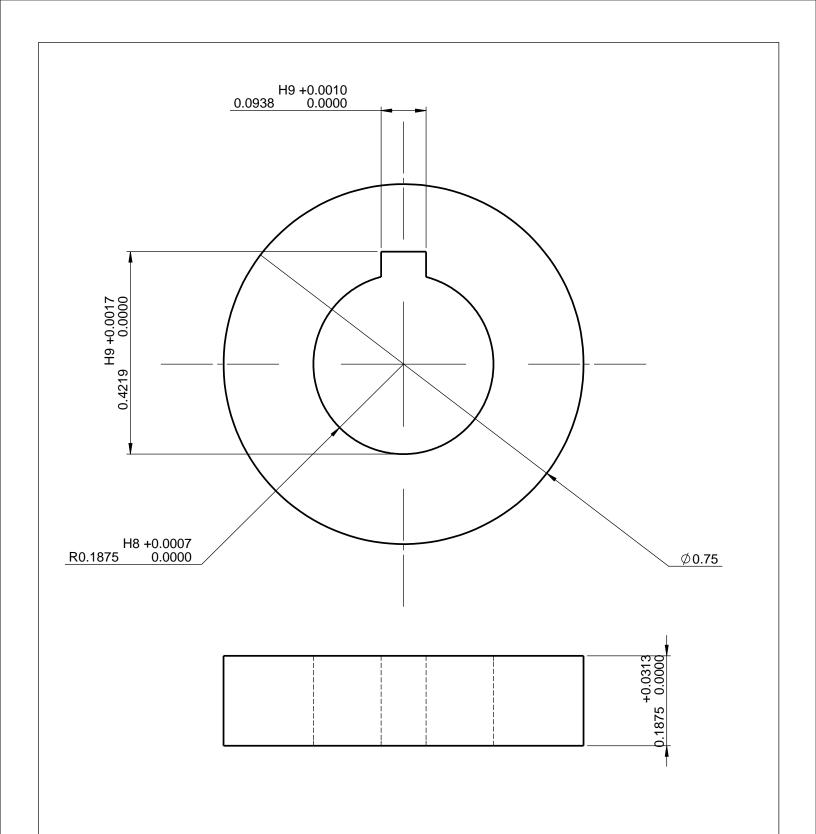
Edición educacional de SolidWorks Sólo para uso en la enseñanza

UAM AZCAPOTZALCO			
ASESORES M. en C. Sergio Alejandro Villanueva Pruneda			
Ing. Romy Pérez Moreno			
ESCALA	DESCRIPCIÓN		
1:4	10.3.1. TAPA SUPERIOR		
TAMAÑO	UNIDADES	\triangle	NO. DIBUJO
4 CARTAS	mm		5M-13015
	ASESORES MIN. ESCALA 1:4 TAMAÑO	ASESORES M. en C. Sergio A Ing. Romy Pérez I ESCALA DESCRIPCIÓN 1:4 10.3. TAMAÑO UNIDADES	ASESORES M. en C. Sergio Alejandro Villanue Ing. Romy Pérez Moreno ESCALA 1:4 DESCRIPCIÓN 10.3.1. TAPA SUPER TAMAÑO UNIDADES

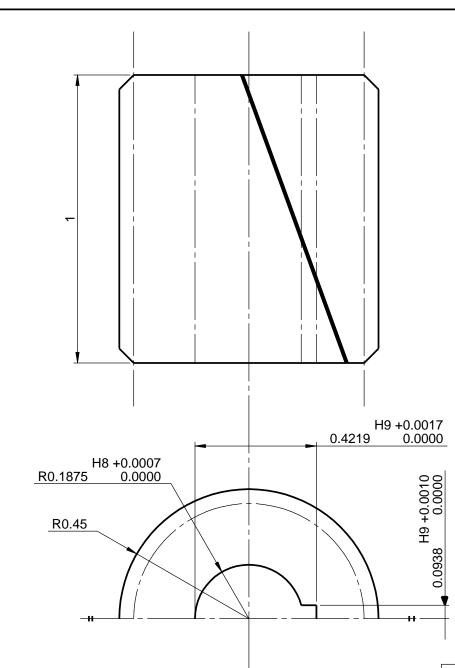




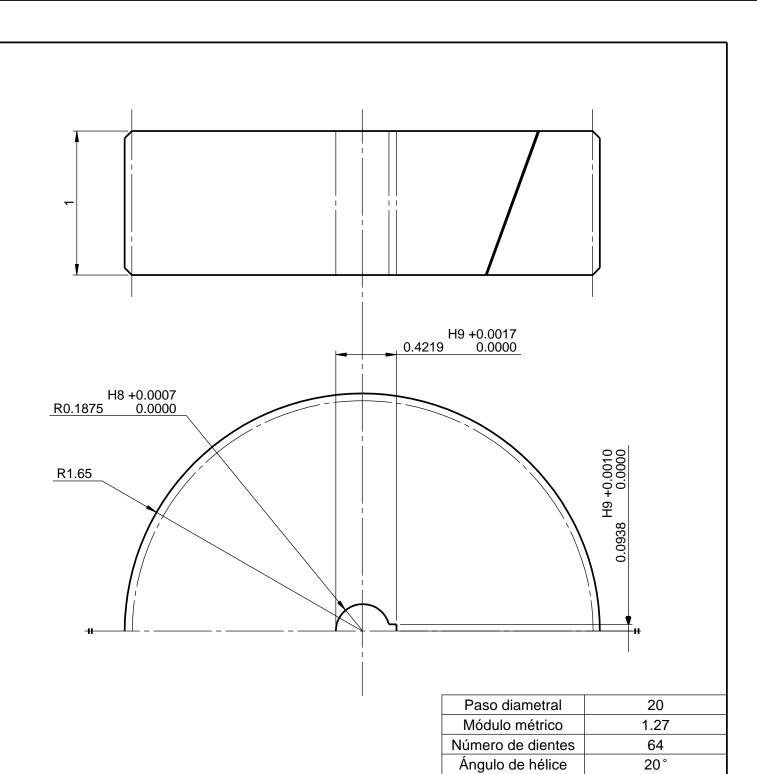

Notas:
Todos los radios interiores son de 1/8.
Tolerancias no indicadas JS13 y js13.


Edición educacional de SolidWorks Sólo para uso en la enseñanza
--

ALUMNO OMAR HERNÁNDEZ PANIAGUA	UAM AZCAPOTZALCO			
MATERIA	ASESORES M. en C. Sergio Alejandro Villanueva Pruneda Ing. Romy Pérez Moreno			
PROYECTO TERMINAL				
MATERIAL	ESCALA	DESCRIPCIÓN		
ALUMINIO 6063 T5	1:4	10.3.1. TAPA INFERIOR		
REDISEÑO SISTEMA DE TRACCIÓN	TAMAÑO	UNIDADES		NO. DIBUJO
ROBOT PAKAL	4 CARTAS	mm		5M-13016



Tolerancias no indicadas JS13 y js13.

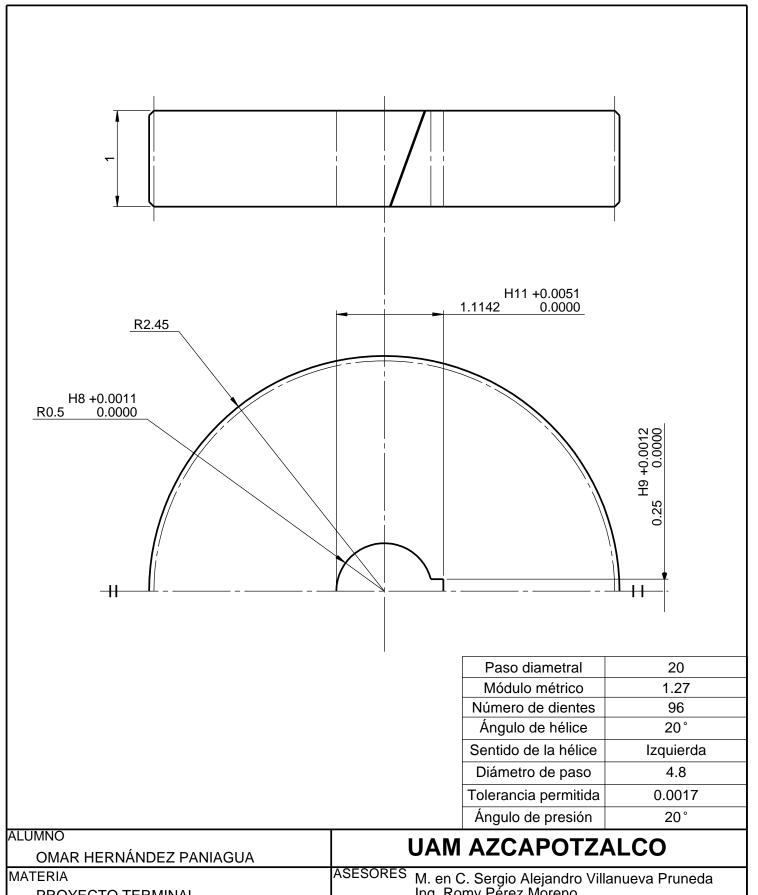

ALUMNO		A B A A Z C A	DOTZAL (20	
OMAR HERNÁNDEZ PANIAGUA		AM AZCA			
MATERIA	ASESORES M	ASESORES M. en C. Sergio Alejandro Villanueva Pruneda Ing. Romy Pérez Moreno			
PROYECTO TERMINAL	In	Ing. Romy Pěrez Moreno			
MATERIAL	ESCALA	DESCRIPCIÓN			
ALUMINIO 6061 T6	5:1	10.3.0	6. CALZA ENGF	RANE	
REDISEÑO SISTEMA DE TRACCIÓN	TAMAÑO	UNIDADES		NO. DIBUJO	
Edición educacional de SolidW	orks Carta	inches		2M-13020	
Sólo para uso en la enseñanza				71	

Paso diametral	20
Módulo métrico	1.27
Número de dientes	16
Ángulo de hélice	20°
Sentido de la hélice	Derecha
Diámetro de paso	0.8
Tolerancia permitida	0.0014
Ángulo de presión	20°

ALUMNO OMAR HERNÁNDEZ PANIAGUA	UAM AZCAPOTZALCO				
MATERIA PROYECTO TERMINAL	ASESORES M. Ing	en C. Sergio Ale J. Romy Pérez M	ejandro Villanue Ioreno	va Pruneda	
MATERIAL NYLON 6/6	TAMAÑO 3:1	DESCRIPCIÓN	10.3.7. PIÑON		
REDISEÑO SISTEMA DE TRACCIÓN Edición educacional de SolidWo	TAMAÑO rks CARTA	UNIDADES inches	$\oplus \Box$	NO. DIBUJO 2M-13021	

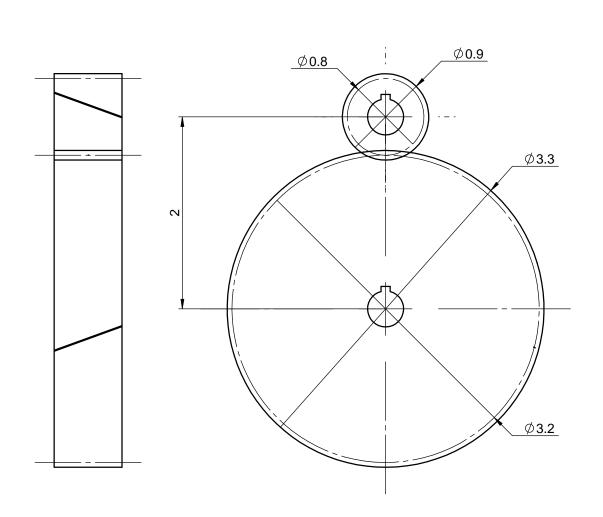
Sólo para uso en la enseñanza

		Ángulo de	presión		20°
ALUMNO OMAR HERNÁNDEZ PANIAGUA	UA	M AZCA	POTZ	ALC	0
	ASESORES M. en C. Sergio Alejandro Villanueva Pruneda Ing. Romy Pérez Moreno				/a Pruneda
MATERIAL NYLON 6/6	TAMAÑO 1.5:1	DESCRIPCIÓN	NGRANE [
REDISEÑO SISTEMA DE TRACCIÓN Edición educacional de SolidWo	1	UNIDADES inches	⊕ ∈	\exists	NO. DIBUJO 2M-13022
Sólo para uso en la enseñanza					73

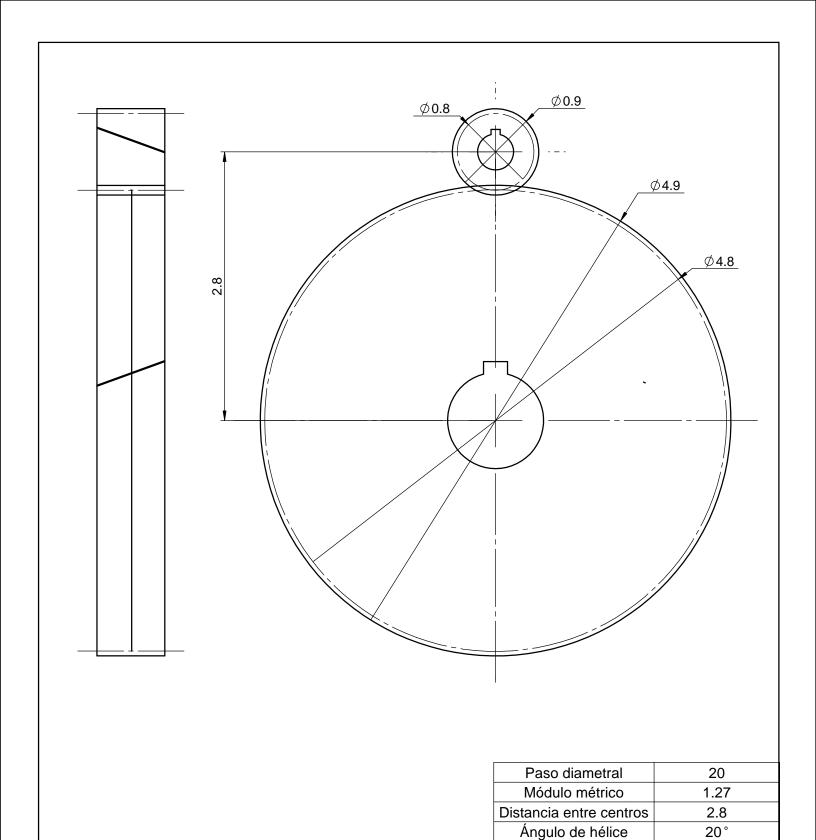

Izquierda

3.2

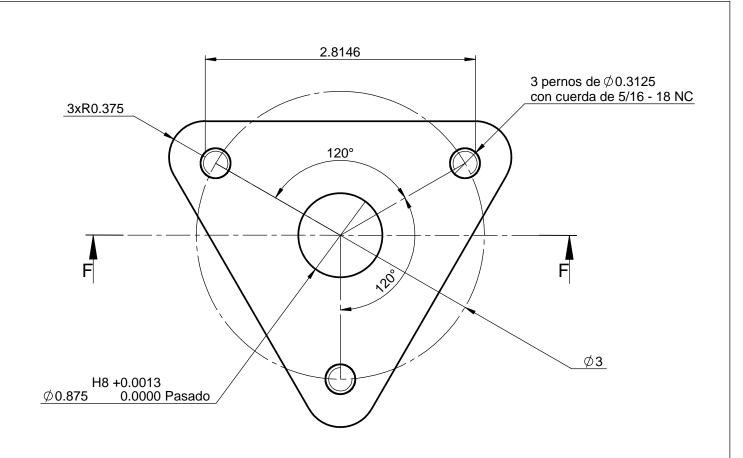
0.0016

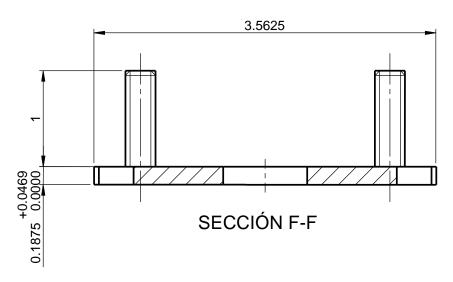

Sentido de la hélice Diámetro de paso

Tolerancia permitida

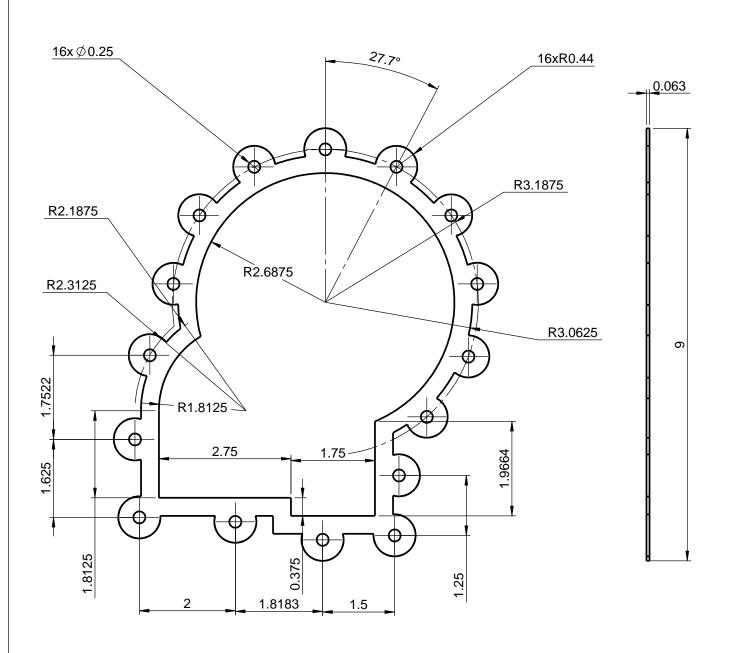

OMAR HERNÁNDEZ PANIAGUA		AM AZCA	- 0	
MATERIA	ASESORES M. en C. Sergio Alejandro Villanueva Pruneda Ing. Romy Pérez Moreno			
PROYECTO TERMINAL	<u> </u>	ig. Romy Pérez N	/loreno	
MATERIAL	TAMAÑO	DESCRIPCIÓN		
NYLON 6/6	1:1	10.3.	9. Engrane de sa	alida
REDISEÑO SISTEMA DE TRACCIÓN	TAMAÑO	UNIDADES	\Box	NO. DIBUJO
Edición educacional de SolidW	orks <u>Carta</u>	inches		2M-13023

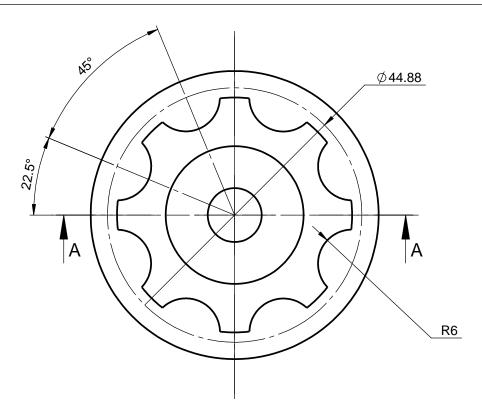
Solo para uso en la enseñanza

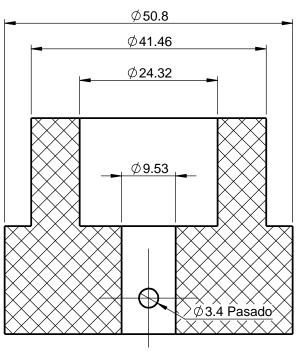

Paso diametral	20
Módulo métrico	1.27
Distancia entre centros	2
Ángulo de hélice	20°
Ángulo de presión	20°


ALUMNO OMAR HERNÁNDEZ PANIAGUA		AM AZCA		_
MATERIA PROYECTO TERMINAL ASESORES M. en C. Sergio Alejandro Villanueva Pru Ing. Romy Pérez Moreno				va Pruneda
MATERIAL	ESCALA 1:1	DESCRIPCIÓN 10.3.10 PF	RIMER PASO RI	EDUCCION
REDISEÑO SISTEMA DE TRACCIÓN Edición educacional de SolidW	TAMAÑO orks CARTA	UNIDADES inches	$\oplus \Box$	NO. DIBUJO 2M-13024
Sólo para uso en la enseñanza				75

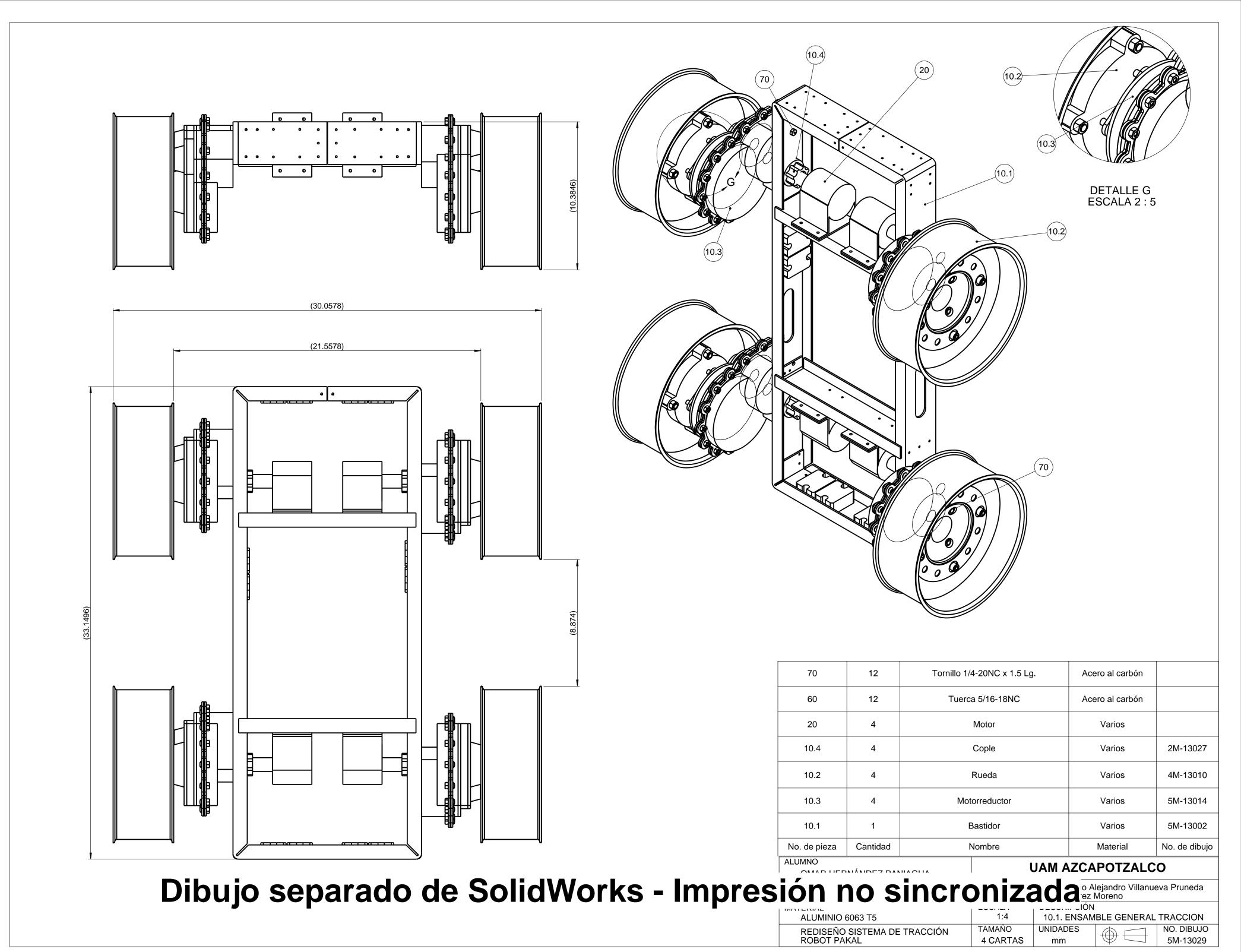
		Ángulo d	le presión	20°	
ALUMNO	114		DOTZAL	2	
OMAR HERNÁNDEZ PANIAGUA	UAM AZCAPOTZALCO				
MATERIA	ASESORES M. en C. Sergio Alejandro Villanueva Pruneda				
PROYECTO TERMINAL	M. en C. Sergio Alejandro Villanueva Pruneda Ing. Romy Pérez Moreno				
MATERIAL ESCALA		DESCRIPCIÓN			
	1:1	10.3.10 SE	GUNDO PAS	O REDUCCION	
REDISEÑO SISTEMA DE TRACCIÓN	TAMAÑO (JNIDADES	A _	NO. DIBUJO	
Edición educacional de SolidWo	rksCARTA	inches		2M-13025	


Sólo para uso en la enseñanza


Tolerancias no indicadas JS13 y js13.


ALUMNO			DOTZAL (20
OMAR HERNÁNDEZ PANIAGUA	UAM AZCAPOTZALCO			
MATERIA	ASESORES M. en C. Sergio Alejandro Villanueva Pruneda Ing. Romy Pérez Moreno			
PROYECTO TERMINAL		ng. Romy Pérez N	Noreno	
MATERIAL	TAMAÑO	DESCRIPCIÓN		
ACERO AL CARBONO	1:1	10.3.1	12. PLACA SUP	ERIOR
REDISEÑO SISTEMA DE TRACCIÓN	TAMAÑO	UNIDADES		NO. DIBUJO
Edición educacional de SolidW	orks <u>Carta</u>	inches		2M-13026
Sólo para uso en la enseñanza				77

Tolerancias no indicadas JS13 y js13


ALUMNO OMAR HERNÁNDEZ PANIAGUA		IAM AZCA		
MATERIA	ASESORES	M. en C. Sergio Ale ng. Romy Pérez M	ejandro Villanue	va Pruneda
PROYECTO TERMINAL	I		1oreno	
MATERIAL	ESCALA	DESCRIPCIÓN		
NEOPRENO	1:2	10.3.13	3 JUNTA	
REDISEÑO SISTEMA DE TRACCIÓN	TAMAÑO	UNIDADES		NO. DIBUJO
ROB(Dibujo separado de SolidW	orks - Imp	resión no sir	ncronizada_	2M-13027

CORTE	A-A
-------	-----

ALUMNO	11/			20	
OMAR HERNÁNDEZ PANIAGUA	UAM AZCAPOTZALCO				
MATERIA	ASESORES M. en C. Sergio Alejandro Villanueva Pruneda				
PROYECTO TERMINAL	ASESORES M. en C. Sergio Alejandro Villanueva Pruneda Ing. Romy Pérez Moreno				
MATERIAL	ESCALA	DESCRIPCIÓN			
NAYLON 6/10	1.5:1		10.4. COPLE		
REDISEÑO SISTEMA DE TRACCIÓN	TAMAÑO	UNIDADES		NO. DIBUJO	
ROB(Dibujo separado de SolidW	orks - Impre	sión no sin	ncronizada_	2M-13028	

11. SIMULACION CINEMATICA

En el disco se encuentran dos videos con la simulación cinemática del motorreductor y de la tracción completa. En la Tabla 20 se muestran los detalles de los videos.

Nombre	Duración	Formato	Requerimientos para reproducirlo	Ubicación
MotorreductorPakal	15 seg.	AVI	Reproductor de windows media	D:\videos
Robot Pakal	15 seg.	AVI	Reproductor de windows media	D:\videos

Tabla 20. Detalles de los videos de simulación.

En el primer video se muestra la simulación del movimiento de los engranes dentro del motorreductor. En el segundo video se muestra una vista general de la tracción del robot pakal para tener una vista tridimensional del ensamble de la misma.

12. ESTIMACION DE COSTOS

La cotización de los costos de las piezas a maquinar se realizó en un taller mecánico llamado "Mantenimiento industrial" ubicado en la calle Real San Martin # 249, colonia San Martin Xochinahuac, Azcapotzalco, Distrito Federal. El teléfono del taller es 53182163. La cotización fue dada por el Sr. Miguel Ángel Flores.

Las tapas del reductor no pudieron ser cotizadas en este taller debido a que no cuenta con la maquinaria necesaria para realizar estas piezas debido a su complejidad de maquinado.

Los precios cotizados de las piezas ya incluyendo mano de obra y material son los siguientes:

Componente	Material	Cantidad	Precio unitario	Precio total
Rin	Aluminio 6061 T6	4	\$3,800.00	\$15,020.00
Árbol piñón de entrada	Acero al carbón	4	\$850.00	\$3,400.00
Árbol engrane de entrada	Acero al carbón	4	\$380.00	\$1,520.00
Árbol engrane salida	Aluminio 6061 T6	4	\$440.00	\$1,760.00
Calza entrada	Aluminio 6061 T6	4	\$70.00	\$280.00
Placa superior	Acero al carbón	4	\$450.00	\$1,800.00
Engrane 16 dientes	Nylon 6/10	8	\$500.00	\$4,000.00
Engrane 64 dientes	Nylon 6/10	4	\$950.00	\$3,800.00
Engrane 96 dientes	Nylon 6/10	4	\$1,200.00	\$4,800.00
SUBTOTAL 1				\$36,380.00

Tabla 21. Cotización de costo de fabricación de las piezas del motorreductor.

La cotización de las tapas de aluminio se llevó a cabo la fundidora Metalcast S.A de C.V. ubicada en Boulevard "A" #22, Parque Industrial Puebla 2000, Puebla, Puebla. El teléfono de la empresa es el 01 22 22 82 63 52. Las cotizaciones de las tapas fueron realizadas en dos pasos.

- El precio de la fabricación de cada molde de las tapas para realizar la pieza de fundición tiene un costo de \$800 dólares americanos.
- El precio de cada pieza fundida es de \$100 dólares americanos.

La cotización en moneda nacional (tomando en cuenta el precio actual del dólar americano al 15 de noviembre de 2013) es la siguiente:

Componente	Material	Cantidad	Precio unitario	Precio total
Molde de tapa de entrada	No especificado	1	\$10,354.64	\$10,354.64
Molde de tapa de salida	No especificado	1	\$10,354.64	\$10,354.64
Tapa de entrada del reductor	Aluminio 6061 T6	4	\$1,293.77	\$5,175.08
Tapa de salida del reductor	Aluminio 6061 T6	4	\$1,293.77	\$5,175.08
SUBTOTAL 2				\$31,059.44

Tabla 22. Cotización de las tapas del motorreductor por Metalcast S.A. de C.V.

Entonces, el costo total de fabricación es de:

Subtotal 1	\$36,380.00		
Subtotal 2	\$31,059.44		
Total	\$67,439.44		

Tabla 23. Costo total de fabricación.

13.REFERENCIAS BIBLIOGRÁFICAS

- [1] Abraham Hazael Ramírez Hernández, "Proyecto terminal en Diseño mecánico y construcción del sistema de movilidad de un robot para la competencia Lunabotics Mining Competition de la NASA", Pags. 30, 31 y apéndice B, Dibujos de definición de las partes del sistema de movilidad.
- [2] Segway, simply moving, "Detalle de los componentes" [en línea], consultado 24 de Septiembre de 2013. < http://www.segway.es/detalles.asps >
- [2] Robert L. Mott, "Diseño de elementos de máquinas", Pearson México 2006. Pags. 310, 332, 375, 377, 388, 389, 390, 392, 434, 436, 453, 454,
- [4] A. Chavelaier "Guide du dessimateur industriel", Hachette Technique France 2004. Pags.
- [5] Figura 9, Segway, simply moving, "Segway" [en línea], consultado 18 de octubre de 2013. < http://www.segway.es/police_i.asp >.
- [6] Figura 23, Vipal, "Bandas precuradas Vipal" [en línea], consultado 21 de octubre de 2013. http://www.borrachasvipal.com/produtos/recauchutaje-de-neumaticos/bandas/bandas-precuradas/vehiculos-4x4/vj910/p49/es