## Método Denavith - Hartenberg

## Ubicación de los sistemas de referencia.

Antes de aplicar este método se deberá analizar la estructura del robot, para identificar la cantidad de eslabones y los tipos de juntas involucradas (revolutas o prismáticas). A la cantidad total de eslabones en movimiento se le llamará n.

- 1. Asignar el número 0 a la base del robot y continuar numerando sus eslabones en movimiento desde 1 hasta n.
- Trazar los ejes de movimiento de las articulaciones. Para una revoluta será el eje alrededor del cual se realiza el giro. Para una prismática será la línea a lo largo de la que se realiza el desplazamiento.
- 3. Numerar cada eje de movimiento desde 1 (el más cercano a la base) y acabando en n.
- 4. Situar el eje  $Z_i$  sobre el eje de cada articulación i+1, para i:0,...,n-1. El sentido positivo de cada eje  $Z_i$  se asigna de forma arbitraria.

| i   | $Z_{i}$   | $Eje_{_{i+1}}$ |
|-----|-----------|----------------|
| 0   | $Z_0$     | $Eje_1$        |
| :   | ÷         | ÷              |
| n-1 | $Z_{n-1}$ | $Eje_{n}$      |

- 5. Situar el origen de cada sistema  $\{S_i\}$ , para i:1,...,n-1. Considerar estos dos casos:
  - $\triangleright$   $Z_i$  y  $Z_{i-1}$  se intersectan: situar el origen  $\{S_i\}$  en el punto donde se cortan.
  - $ightharpoonup Z_i$  y  $Z_{i-1}$  son paralelos: situar el origen  $\left\{S_i\right\}$  libremente en el eje de la articulación i+1.

| i   | $Z_{i}$   | $Z_{i-1}$ | ¿Se intersectan o son paralelos? | $\{S_i\}$     |
|-----|-----------|-----------|----------------------------------|---------------|
| 1   | $Z_1$     | $Z_0$     |                                  | $\{S_1\}$     |
| :   | :         | :         |                                  | :             |
| n-1 | $Z_{n-1}$ | $Z_{n-2}$ |                                  | $\{S_{n-1}\}$ |

6. Situar el eje  $X_i$  perpendicular entre cada par de ejes  $Z_i$  y el eje anterior  $Z_{i-1}$ , para i:n-1,...,1. Asignar de forma arbitraria el sentido positivo al eje  $X_i$ .

| i   | $Z_{i}$   | $Z_{i-1}$ | $X_{i}$   |
|-----|-----------|-----------|-----------|
| n-1 | $Z_{n-1}$ | $Z_{n-2}$ | $X_{n-1}$ |
| :   | :         | :         |           |
| 1   | $Z_1$     | $Z_0$     | $X_1$     |

7. Situar cada eje  $Y_i$  de modo que se forme un triedro a derechas con  $X_i$  y  $Z_i$ , para i: n-1,...,1.

| i   | $X_{i}$   | $Z_{i}$   | $Y_{i}$   |
|-----|-----------|-----------|-----------|
| n-1 | $X_{n-1}$ | $Z_{n-1}$ | $Y_{n-1}$ |
| :   | :         | :         | :         |
| 1   | $X_1$     | $Z_1$     | $Y_1$     |

- 8. Situar el origen del sistema de la base  $\{S_0\}$  sobre cualquier punto del eje  $Z_0$ . Los ejes  $X_0$  y  $Y_0$  se orientan libremente, con tal de que formen un triedro a derechas.
- 9. Situar el origen del sistema de la herramienta (tool)  $\{S_n\} = \{S_T\}$  en el extremo útil del robot.
- 10. Situar el eje  $Z_n$  de forma que sea paralelo a  $Z_{n-1}$ . Situar el eje  $X_n$  de forma que sea perpendicular a  $Z_n$  y  $Z_{n-1}$ . Situar el eje  $Y_n$  de forma que se genere un triedro a derechas con  $X_n$  y  $Z_n$ .

## Determinación de los parámetros $\theta$ , d, a y $\alpha$ .

Ubicados los sistemas en el brazo, se determinarán los parámetros  $\theta,d,a$  y  $\alpha$ . Los primeros dos  $(\theta \ y \ d)$  serán un **giro** y un **desplazamiento** sobre el **eje**  $Z_{i-1}$ ; los segundos dos  $(a \ y \ \alpha)$  serán un **giro** y un **desplazamiento** sobre el **eje**  $X_i$ . Se llenará una tabla para i:1,...,n:

|       | $Z_{i-1}$    |         | $X_{i}$ |              |
|-------|--------------|---------|---------|--------------|
| i     | $\theta_{i}$ | $d_{i}$ | $a_i$   | $\alpha_{i}$ |
| 1 a n |              |         |         |              |

- 1. Determinar el ángulo  $\theta_i$  como el giro alrededor del eje  $Z_{i-1}$  ( $Z_{anterior}$ ) que el eje  $X_{i-1}$  ( $X_{anterior}$ ) debe ser girado para que sea paralelo al eje  $X_i$  ( $X_{actual}$ ). El giro podrá ser positivo o negativo, respetando la regla de un tornillo a derechas.
- 2. Determinar la distancia  $d_i$  como el desplazamiento del sistema  $\{S_{i-1}\}$  a lo largo eje  $Z_{i-1}$  necesario para que el eje  $X_{i-1}$  se empalme al eje  $X_i$ . Se debe conservar el signo del desplazamiento sobre el eje  $Z_{i-1}$ .
- 3. Determinar la distancia  $a_i$  como el desplazamiento del sistema  $\{S_{i-1}\}$  a lo largo eje  $X_i$  necesario para que el sistema  $\{S_{i-1}\}$  coincida con el sistema  $\{S_i\}$ . Se debe conservar el signo del desplazamiento sobre el eje  $X_i$ .
- 4. Determinar el ángulo  $\alpha_i$  como el giro alrededor del eje  $X_i$  necesario para que todos los ejes del sistema  $\{S_{i-1}\}$  coincidan completamente con los ejes del sistema  $\{S_i\}$ . El giro podrá ser positivo o negativo, respetando la regla de un tornillo a derechas.
- 5. Sustituir los parámetros  $\theta_i, d_i, a_i$  y  $\alpha_i$  en la matriz de transformación homogénea que relaciona al sistema  $\{S_{i-1}\}$  con el sistema  $\{S_i\}$ :

$$T_i = \begin{bmatrix} \cos \theta_i & -\cos \alpha_i \operatorname{seno} \theta_i & \operatorname{seno} \alpha_i \operatorname{seno} \theta_i & a \cos \theta_i \\ \operatorname{seno} \theta_i & \cos \alpha_i \cos \theta_i & -\operatorname{seno} \alpha_i \cos \theta_i & a \operatorname{seno} \theta_i \\ 0 & \operatorname{seno} \alpha_i & \cos \alpha_i & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Finalmente, calcular la matriz de transformación total como el producto de todas las transformadas individuales.

$${}^{0}T_{n} = {}^{0}T_{1} {}^{1}T_{2} \cdots {}^{n-1}T_{n}$$



















